ترغب بنشر مسار تعليمي؟ اضغط هنا

EAGLE and Illustris-TNG predictions for resolved eROSITA X-ray observations of the circumgalactic medium around normal galaxies

119   0   0.0 ( 0 )
 نشر من قبل Benjamin Oppenheimer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We simulate stacked observations of nearby hot X-ray coronae associated with galaxies in the EAGLE and Illustris-TNG hydrodynamic simulations. A forward modeling pipeline is developed to predict 4-year eROSITA observations and stacked image analysis, including the effects of instrumental and astrophysical backgrounds. We propose an experiment to stack z~0.01 galaxies separated by specific star-formation rate (sSFR) to examine how the hot (T>=10^6 K) circumgalactic medium (CGM) differs for high- and low-sSFR galaxies. The simulations indicate that the hot CGM of low-mass (M_*~10^{10.5} Msol), high-sSFR (defined as the top one-third ranked by sSFR) central galaxies will be detectable to a galactocentric radius r~30-50 kpc. Both simulations predict lower luminosities at fixed stellar mass for the low-sSFR galaxies (the lower third of sSFR) with Illustris-TNG predicting 3x brighter coronae around high-sSFR galaxies than EAGLE. Both simulations predict detectable emission out to r~150-200 kpc for stacks centered on high-mass (M_*~10^{11.0} Msol) galaxies, with EAGLE predicting brighter X-ray halos. The extended soft X-ray luminosity correlates strongly and positively with the mass of circumgalactic gas within the virial radius (f_{CGM}). Prior analyses of both simulations have established that f_{CGM} is reduced by expulsive feedback driven mainly by black hole growth, which quenches galaxy growth by inhibiting replenishment of the ISM. Both simulations predict that eROSITA stacks should not only conclusively detect and resolve the hot CGM around L^* galaxies for the first time, but provide a powerful probe of how the baryon cycle operates, for which there remains an absence of consensus between state-of-the-art simulations.



قيم البحث

اقرأ أيضاً

We estimate the detectability of X-ray metal-line emission from the circumgalactic medium (CGM) of galaxies over a large halo mass range ($mathrm{M}_{mathrm{200c}} =10^{11.5}$-$10^{14.5},mathrm{M}_{odot}$) using the EAGLE simulations. With the XRISM Resolve instrument, a few bright (K-$alpha$ or Fe L-shell) lines from $mathrm{M}_{mathrm{200c}} gtrsim 10^{13},mathrm{M}_{odot}$ haloes should be detectable. Using the Athena X-IFU or the Lynx Main Array, emission lines (especially from O$,$VII and O$,$VIII) from the inner CGM of $mathrm{M}_{mathrm{200c}} gtrsim10^{12.5},mathrm{M}_{odot}$ haloes become detectable, and intragroup and intracluster gas will be detectable out to the virial radius. With the Lynx Ultra-high Resolution Array, the inner CGM of haloes hosting $mathrm{L}_{*}$ galaxies is accessible. These estimates do assume long exposure times ($sim 1,$Ms) and large spatial bins ($sim1$-$10,mathrm{arcmin}^{2}$). We also investigate the properties of the gas producing this emission. CGM emission is dominated by collisionally ionized (CI) gas, and tends to come from halo centres. The gas is typically close to the maximum emissivity temperature for CI gas ($mathrm{T}_mathrm{peak}$), and denser and more metal-rich than the bulk of the CGM at a given distance from the central galaxy. However, for the K-$alpha$ lines, emission can come from hotter gas in haloes where the virialized, volume-filling gas is hotter than $mathrm{T}_mathrm{peak}$. Trends of emission with halo mass can largely be explained by differences in virial temperature. Differences between lines generally result from the different behaviour of the emissivity as a function of temperature of the K-$alpha$, He-$alpha$-like, and Fe~L-shell lines. We conclude that upcoming X-ray missions will open up a new window onto the hot CGM.
The circumgalactic medium (CGM) encodes signatures of the galaxy-formation process, including the interaction of galactic outflows driven by stellar and supermassive black hole (SMBH) feedback with the gaseous halo. Moving beyond spherically symmetri c radial profiles, we study the textit{angular} dependence of CGM properties around $z=0$ massive galaxies in the IllustrisTNG simulations. We characterize the angular signal of density, temperature, and metallicity of the CGM as a function of galaxy stellar mass, halo mass, distance, and SMBH mass, via stacking. TNG predicts that the CGM is anisotropic in its thermodynamical properties and chemical content over a large mass range, $M_*sim10^{10-11.5}M_odot$. Along the minor axis directions, gas density is diluted, whereas temperature and metallicity are enhanced. These feedback-induced anisotropies in the CGM have a magnitude of $0.1-0.3$ dex, extend out to the halo virial radius, and peak at Milky Way-like masses, $M_*sim10^{10.8}M_odot$. In TNG, this mass scale corresponds to the onset of efficient SMBH feedback and the production of strong outflows. By comparing the anisotropic signals predicted by TNG versus other simulations -- Illustris and EAGLE -- we find that each simulation produces distinct signatures and mass dependencies, implying that this phenomenon is sensitive to the underlying physical models. Finally, we explore X-ray emission as an observable of this CGM anistropy, finding that future X-ray observations, including the eROSITA all-sky survey, will be able to detect and characterize this signal, particularly in terms of an angular modulation of the X-ray hardness.
We use the EAGLE (Evolution and Assembly of GaLaxies and their Environments) cosmological simulation to study the distribution of baryons, and far-ultraviolet (O VI), extreme-ultraviolet (Ne VIII) and X-ray (O VII, O VIII, Ne IX, and Fe XVII) line ab sorbers, around galaxies and haloes of mass $mathrm{M}_{200c}=10^{11}$-$10^{14.5},mathrm{M}_{odot}$ at redshift 0.1. EAGLE predicts that the circumgalactic medium (CGM) contains more metals than the interstellar medium across halo masses. The ions we study here trace the warm-hot, volume-filling phase of the CGM, but are biased towards temperatures corresponding to the collisional ionization peak for each ion, and towards high metallicities. Gas well within the virial radius is mostly collisionally ionized, but around and beyond this radius, and for O VI, photoionization becomes significant. When presenting observables we work with column densities, but quantify their relation with equivalent widths by analysing virtual spectra. Virial-temperature collisional ionization equilibrium ion fractions are good predictors of column density trends with halo mass, but underestimate the diversity of ions in haloes. Halo gas dominates the highest column density absorption for X-ray lines, but lower density gas contributes to strong UV absorption lines from O VI and Ne VIII. Of the O VII (O VIII) absorbers detectable in an Athena X-IFU blind survey, we find that 41 (56) per cent arise from haloes with $mathrm{M}_{200c}=10^{12.0}$-$10^{13.5},mathrm{M}_{odot}$. We predict that the X-IFU will detect O VII (O VIII) in 77 (46) per cent of the sightlines passing $mathrm{M}_{star}=10^{10.5}$-$10^{11.0},mathrm{M}_{odot}$ galaxies within 100 pkpc (59 (82) per cent for $mathrm{M}_{star}>10^{11.0},mathrm{M}_{odot}$). Hence, the X-IFU will probe covering fractions comparable to those detected with the Cosmic Origins Spectrograph for O VI.
54 - Aditi Vijayan , Miao Li 2021
The hot component of the circum-galactic medium (CGM) around star forming galaxies is detected as diffuse X-ray emission. The X-ray spectra from the CGM depend on the temperature and metallicity of the emitting plasma, providing important information about the feeding and feedback of the galaxy. The observed spectra are commonly fitted using simple 1-Temperature (1-T) or 2-T models. However, the actual temperature distribution of the gas can be complex because of the interaction between galactic outflows and halo gas. Here we demonstrate this by analysing 3-D hydrodynamical simulations of the CGM with a realistic outflow model. We investigate the physical properties of the simulated hot CGM, which shows a broad distribution in density, temperature, and metallicity. By constructing and fitting the simulated spectra, we show that, while the 1-T and 2-T models are able to fit the synthesized spectra reasonably well, the inferred temperature(s) bear little physical meaning. Instead, we propose a log-normal distribution as a more physical model. The log-normal model better fits the simulated spectra while reproducing the gas temperature distribution. We also show that when the star formation rate is high, the spectra inside the bi-conical outflows are distinct from that outside, as outflows are generally hotter and more metal-enriched. Finally, we produce mock spectra for future missions with the eV-level spectral resolution, such as Athena, Lynx, and HUBS.
282 - Jiang-Tao Li 2018
The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these missing baryons may be stored in a hot tenuous circum-galactic medium (CGM) aro und massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev-Zeldovich (SZ) signal claimed that $sim(1-50)%$ of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%-20% of the virial radius). Here we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of $approx 200rm~kpc$ (or $approx130rm~kpc$ above the 1~$sigma$ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for $(8pm4)%$ of the baryonic mass expected for the halos. Including the stars, the baryon fraction is $(27pm16)%$, or $(39pm20)%$ by assuming a flattened density profile at $rgtrsim130rm~kpc$. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the missing baryons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا