ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical, X-ray, and $gamma$-ray observations of the candidate transitional millisecond pulsar 4FGL J0427.8-6704

88   0   0.0 ( 0 )
 نشر من قبل Mark Kennedy
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an optical, X-ray, and $gamma$-ray study of 1SXPS J042749.2-670434, an eclipsing X-ray binary which has an associated $gamma$-ray counterpart, 4FGL J0427.8-6704. This association has led to the source being classified as a transitional millisecond pulsar (tMSP) in an accreting state. We analyse 10.5 years of Fermi LAT data, and detect a $gamma$-ray eclipse at the same phase as optical and X-ray eclipses at the >5$sigma$ level, a significant improvement on the 2.8$sigma$level of the previous detection. The confirmation of this eclipse solidifies the association between the X-ray source and the $gamma$-ray source, strengthening the tMSP classification. However, analysis of several optical data sets and an X-ray observation do not reveal a change in the sources median brightness over long timescales or a bi-modality on short timescales. Instead, the light curve is dominated by flickering which has a correlation time of 2.6 min alongside a potential quasi-periodic oscillation at $sim$21 min. The mass of the primary and secondary star are constrained to be $M_1=1.43^{+0.33}_{-0.19}$ M$_{odot}$ and $M_2=0.3^{+0.17}_{-0.12}$ M$_{odot}$ through modelling of the optical light curve. While this is still consistent with a white dwarf primary, we favour the transitional millisecond pulsar in a low accretion state classification due to the significance of the $gamma$-ray eclipse detection.



قيم البحث

اقرأ أيضاً

We report the discovery of a variable optical and X-ray source within the error ellipse of the previously unassociated Fermi Large Area Telescope $gamma$-ray source 4FGL J0407.7--5702. A 22 ksec observation from XMM-Newton/EPIC shows an X-ray light c urve with rapid variability and flaring. The X-ray spectrum is well-fit by a hard power law with $Gamma = 1.7$. Optical photometry taken over several epochs is dominated by aperiodic variations of moderate amplitude. Optical spectroscopy with SOAR and Gemini reveals a blue continuum with broad and double-peaked H and He emission, as expected for an accretion disk around a compact binary. Overall, the optical, X-ray, and $gamma$-ray properties of 4FGL J0407.7--5702 are consistent with a classification as a transitional millisecond pulsar in the sub-luminous disk state. We also present evidence that this source is more distant than other confirmed or candidate transitional millisecond pulsar binaries, and that the ratio of X-ray to $gamma$-ray flux is a promising tool to help identify such binaries, indicating that a more complete census for these rare systems is becoming possible.
382 - A.K.H. Kong , R. Jin , T.-C. Yen 2014
We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observation, we have identified an X-ray and optical counterpart of 2FGL J1653.6-0159. The source exhibits a periodic m odulation of 75 min in optical and possibly also in X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 75 min. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black widow/redback type gamma-ray millisecond pulsar (MSP). The optical and X-ray lightcurve profiles show that the companion is mildly heated by the high-energy emission and the X-rays are from intrabinary shock. Although no radio pulsation has been detected yet, we estimated that the spin period of the MSP is ~2ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.
We report on the first simultaneous XMM-Newton, NuSTAR and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.
PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution ob servational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (TNG, NOT, TJO), X-ray (XMM-Newton, NuSTAR, NICER), infrared (GTC) and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high intensity mode in which the source spends $sim$ 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, optical and X-ray pulses were emitted within a few km, had similar pulse shape and distribution of the pulsed flux density compatible with a power-law relation $F_{ u} propto u^{-0.7}$ connecting the optical and the 0.3-45 keV X-ray band. Optical pulses were detected also during flares with a pulsed flux reduced by one third with respect to the high mode; the lack of a simultaneous detection of X-ray pulses is compatible with the lower photon statistics. We show that magnetically channeled accretion of plasma onto the surface of the neutron star cannot account for the optical pulsed luminosity ($sim 10^{31}$ erg/s). On the other hand, magnetospheric rotation-powered pulsar emission would require an extremely efficient conversion of spin-down power into pulsed optical and X-ray emission. We then propose that optical and X-ray pulses are instead produced by synchrotron emission from the intrabinary shock that forms where a striped pulsar wind meets the accretion disk, within a few light cylinder radii away, $sim$ 100 km, from the pulsar.
We present X-ray observations of the redback eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variabil ity as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and $gamma$-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a $gamma$-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed source detection, the implied $gamma$-ray luminosity is $lesssim$5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient $gamma$-ray producing millisecond pulsars or, if the detection is spurious, the $gamma$-ray emission pattern is not directed towards us.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا