ترغب بنشر مسار تعليمي؟ اضغط هنا

Speech2Action: Cross-modal Supervision for Action Recognition

198   0   0.0 ( 0 )
 نشر من قبل Arsha Nagrani
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Is it possible to guess human action from dialogue alone? In this work we investigate the link between spoken words and actions in movies. We note that movie screenplays describe actions, as well as contain the speech of characters and hence can be used to learn this correlation with no additional supervision. We train a BERT-based Speech2Action classifier on over a thousand movie screenplays, to predict action labels from transcribed speech segments. We then apply this model to the speech segments of a large unlabelled movie corpus (188M speech segments from 288K movies). Using the predictions of this model, we obtain weak action labels for over 800K video clips. By training on these video clips, we demonstrate superior action recognition performance on standard action recognition benchmarks, without using a single manually labelled action example.

قيم البحث

اقرأ أيضاً

With the prevalence of RGB-D cameras, multi-modal video data have become more available for human action recognition. One main challenge for this task lies in how to effectively leverage their complementary information. In this work, we propose a Mod ality Compensation Network (MCN) to explore the relationships of different modalities, and boost the representations for human action recognition. We regard RGB/optical flow videos as source modalities, skeletons as auxiliary modality. Our goal is to extract more discriminative features from source modalities, with the help of auxiliary modality. Built on deep Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) networks, our model bridges data from source and auxiliary modalities by a modality adaptation block to achieve adaptive representation learning, that the network learns to compensate for the loss of skeletons at test time and even at training time. We explore multiple adaptation schemes to narrow the distance between source and auxiliary modal distributions from different levels, according to the alignment of source and auxiliary data in training. In addition, skeletons are only required in the training phase. Our model is able to improve the recognition performance with source data when testing. Experimental results reveal that MCN outperforms state-of-the-art approaches on four widely-used action recognition benchmarks.
Radar is usually more robust than the camera in severe driving scenarios, e.g., weak/strong lighting and bad weather. However, unlike RGB images captured by a camera, the semantic information from the radar signals is noticeably difficult to extract. In this paper, we propose a deep radar object detection network (RODNet), to effectively detect objects purely from the carefully processed radar frequency data in the format of range-azimuth frequency heatmaps (RAMaps). Three different 3D autoencoder based architectures are introduced to predict object confidence distribution from each snippet of the input RAMaps. The final detection results are then calculated using our post-processing method, called location-based non-maximum suppression (L-NMS). Instead of using burdensome human-labeled ground truth, we train the RODNet using the annotations generated automatically by a novel 3D localization method using a camera-radar fusion (CRF) strategy. To train and evaluate our method, we build a new dataset -- CRUW, containing synchronized videos and RAMaps in various driving scenarios. After intensive experiments, our RODNet shows favorable object detection performance without the presence of the camera.
Weakly supervised temporal action localization (WS-TAL) is a challenging task that aims to localize action instances in the given video with video-level categorical supervision. Both appearance and motion features are used in previous works, while th ey do not utilize them in a proper way but apply simple concatenation or score-level fusion. In this work, we argue that the features extracted from the pretrained extractor, e.g., I3D, are not the WS-TALtask-specific features, thus the feature re-calibration is needed for reducing the task-irrelevant information redundancy. Therefore, we propose a cross-modal consensus network (CO2-Net) to tackle this problem. In CO2-Net, we mainly introduce two identical proposed cross-modal consensus modules (CCM) that design a cross-modal attention mechanism to filter out the task-irrelevant information redundancy using the global information from the main modality and the cross-modal local information of the auxiliary modality. Moreover, we treat the attention weights derived from each CCMas the pseudo targets of the attention weights derived from another CCM to maintain the consistency between the predictions derived from two CCMs, forming a mutual learning manner. Finally, we conduct extensive experiments on two common used temporal action localization datasets, THUMOS14 and ActivityNet1.2, to verify our method and achieve the state-of-the-art results. The experimental results show that our proposed cross-modal consensus module can produce more representative features for temporal action localization.
88 - Dongliang He , Fu Li , Qijie Zhao 2018
In this report, our approach to tackling the task of ActivityNet 2018 Kinetics-600 challenge is described in detail. Though spatial-temporal modelling methods, which adopt either such end-to-end framework as I3D cite{i3d} or two-stage frameworks (i.e ., CNN+RNN), have been proposed in existing state-of-the-arts for this task, video modelling is far from being well solved. In this challenge, we propose spatial-temporal network (StNet) for better joint spatial-temporal modelling and comprehensively video understanding. Besides, given that multi-modal information is contained in video source, we manage to integrate both early-fusion and later-fusion strategy of multi-modal information via our proposed improved temporal Xception network (iTXN) for video understanding. Our StNet RGB single model achieves 78.99% top-1 precision in the Kinetics-600 validation set and that of our improved temporal Xception network which integrates RGB, flow and audio modalities is up to 82.35%. After model ensemble, we achieve top-1 precision as high as 85.0% on the validation set and rank No.1 among all submissions.
75 - Dong Cao , Lisha Xu , 2019
Action recognition is an important research topic in computer vision. It is the basic work for visual understanding and has been applied in many fields. Since human actions can vary in different environments, it is difficult to infer actions in compl etely different states with a same structural model. For this case, we propose a Cross-Enhancement Transform Two-Stream 3D ConvNets algorithm, which considers the action distribution characteristics on the specific dataset. As a teaching model, stream with better performance in both streams is expected to assist in training another stream. In this way, the enhanced-trained stream and teacher stream are combined to infer actions. We implement experiments on the video datasets UCF-101, HMDB-51, and Kinetics-400, and the results confirm the effectiveness of our algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا