ﻻ يوجد ملخص باللغة العربية
We investigate how sterile neutrinos with a range of masses influence cosmology in MeV-scale reheating temperature scenarios. By computing the production of sterile neutrinos through the combination of mixing and scattering in the early Universe, we find that light sterile neutrinos, with masses and mixings as inferred from short-baseline neutrino oscillation experiments, are consistent with big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) radiation for the reheating temperature of ${cal O}(1)$ MeV if the parent particle responsible for reheating decays into electromagnetic components (radiative decay). In contrast, if the parent particle mainly decays into hadrons (hadronic decay), the bound from BBN becomes more stringent. In this case, the existence of the light sterile neutrinos can be cosmologically excluded, depending on the mass and the hadronic branching ratio of the parent particle.
From a theoretical point of view, there is a strong motivation to consider an MeV-scale reheating temperature induced by long-lived massive particles with masses around the weak scale, decaying only through gravitational interaction. In this study, w
This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data.
The existence of light sterile neutrinos, as predicted in several models, can help to explain a number of observations starting from dark mater to recent anomalies in short baseline experiments. In this paper we consider two models - Left-Right Symme
Neutrinos, being the only fermions in the Standard Model of Particle Physics that do not possess electromagnetic or color charges, have the unique opportunity to communicate with fermions outside the Standard Model through mass mixing. Such Standard
We investigate how hypothetical particles - sterile neutrinos - can be produced in the interior of exploding supernovae via the resonant conversion of $bar u_mu$ and $bar u_tau$. The novelty of our treatment lies in the proper account of the resulti