ترغب بنشر مسار تعليمي؟ اضغط هنا

MeV-scale reheating temperature and cosmological production of light sterile neutrinos

74   0   0.0 ( 0 )
 نشر من قبل Nagisa Hiroshima
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate how sterile neutrinos with a range of masses influence cosmology in MeV-scale reheating temperature scenarios. By computing the production of sterile neutrinos through the combination of mixing and scattering in the early Universe, we find that light sterile neutrinos, with masses and mixings as inferred from short-baseline neutrino oscillation experiments, are consistent with big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) radiation for the reheating temperature of ${cal O}(1)$ MeV if the parent particle responsible for reheating decays into electromagnetic components (radiative decay). In contrast, if the parent particle mainly decays into hadrons (hadronic decay), the bound from BBN becomes more stringent. In this case, the existence of the light sterile neutrinos can be cosmologically excluded, depending on the mass and the hadronic branching ratio of the parent particle.

قيم البحث

اقرأ أيضاً

From a theoretical point of view, there is a strong motivation to consider an MeV-scale reheating temperature induced by long-lived massive particles with masses around the weak scale, decaying only through gravitational interaction. In this study, w e investigate lower limits on the reheating temperature imposed by big-bang nucleosynthesis assuming both radiative and hadronic decays of such massive particles. For the first time, effects of neutrino self-interactions and oscillations are taken into account in the neutrino thermalization calculations. By requiring consistency between theoretical and observational values of light element abundances, we find that the reheating temperature should conservatively be $T_{rm RH} gtrsim 1.8$ MeV in the case of the 100% radiative decay, and $T_{rm RH} gtrsim$ 4-5 MeV in the case of the 100% hadronic decays for particle masses in the range of 10 GeV to 100 TeV.
The existence of light sterile neutrinos, as predicted in several models, can help to explain a number of observations starting from dark mater to recent anomalies in short baseline experiments. In this paper we consider two models - Left-Right Symme tric Zee model and Extended Seesaw model, that can naturally accommodate the presence of light sterile neutrinos in the eV to MeV mass scale. We perform a detailed study on the neutrinoless double beta decay process which receives major contributions from diagrams involving these light sterile neutrinos. Considering a number of theoretical and experimental constraints, including light neutrino masses and mixings, unitarity of the mixing matrix etc., we compare our predicted values of the half-life of neutrinoless double beta decay with the experimental limits. This can put significant constraints on the neutrino mass, active-sterile neutrino mixing and several other important parameters in these models.
Neutrinos, being the only fermions in the Standard Model of Particle Physics that do not possess electromagnetic or color charges, have the unique opportunity to communicate with fermions outside the Standard Model through mass mixing. Such Standard Model-singlet fermions are generally referred to as sterile neutrinos. In this review article, we discuss the theoretical and experimental motivation for sterile neutrinos, as well as their phenomenological consequences. With the benefit of hindsight in 2020, we point out potentially viable and interesting ideas. We focus in particular on sterile neutrinos that are light enough to participate in neutrino oscillations, but we also comment on the benefits of introducing heavier sterile states. We discuss the phenomenology of eV-scale sterile neutrinos in terrestrial experiments and in cosmology, we survey the global data, and we highlight various intriguing anomalies. We also expose the severe tension that exists between different data sets and prevents a consistent interpretation of the global data in at least the simplest sterile neutrino models. We discuss non-minimal scenarios that may alleviate some of this tension. We briefly review the status of keV-scale sterile neutrinos as dark matter and the possibility of explaining the matter-antimatter asymmetry of the Universe through leptogenesis driven by yet heavier sterile neutrinos.
We investigate how hypothetical particles - sterile neutrinos - can be produced in the interior of exploding supernovae via the resonant conversion of $bar u_mu$ and $bar u_tau$. The novelty of our treatment lies in the proper account of the resulti ng lepton number diffusion. We compute the yield of sterile neutrinos and find that even after taking into account back reaction, sterile neutrinos can carry out a sizeable fraction of the total energy of the explosion comparable to that of active neutrinos. The production is, however, exponentially sensitive to the temperature in the inner supernovae regions, making robust predictions of challenging. In order to understand whether this production affects supernova evolution and can therefore be constrained, detailed simulations including the effects of sterile neutrinos are needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا