ترغب بنشر مسار تعليمي؟ اضغط هنا

AliCoCo: Alibaba E-commerce Cognitive Concept Net

68   0   0.0 ( 0 )
 نشر من قبل Xusheng Luo
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the ultimate goals of e-commerce platforms is to satisfy various shopping needs for their customers. Much efforts are devoted to creating taxonomies or ontologies in e-commerce towards this goal. However, user needs in e-commerce are still not well defined, and none of the existing ontologies has the enough depth and breadth for universal user needs understanding. The semantic gap in-between prevents shopping experience from being more intelligent. In this paper, we propose to construct a large-scale e-commerce cognitive concept net named AliCoCo, which is practiced in Alibaba, the largest Chinese e-commerce platform in the world. We formally define user needs in e-commerce, then conceptualize them as nodes in the net. We present details on how AliCoCo is constructed semi-automatically and its successful, ongoing and potential applications in e-commerce.



قيم البحث

اقرأ أيضاً

With the rapid growth of e-Commerce, online product search has emerged as a popular and effective paradigm for customers to find desired products and engage in online shopping. However, there is still a big gap between the products that customers rea lly desire to purchase and relevance of products that are suggested in response to a query from the customer. In this paper, we propose a robust way of predicting relevance scores given a search query and a product, using techniques involving machine learning, natural language processing and information retrieval. We compare conventional information retrieval models such as BM25 and Indri with deep learning models such as word2vec, sentence2vec and paragraph2vec. We share some of our insights and findings from our experiments.
The 2021 SIGIR workshop on eCommerce is hosting the Coveo Data Challenge for In-session prediction for purchase intent and recommendations. The challenge addresses the growing need for reliable predictions within the boundaries of a shopping session, as customer intentions can be different depending on the occasion. The need for efficient procedures for personalization is even clearer if we consider the e-commerce landscape more broadly: outside of giant digital retailers, the constraints of the problem are stricter, due to smaller user bases and the realization that most users are not frequently returning customers. We release a new session-based dataset including more than 30M fine-grained browsing events (product detail, add, purchase), enriched by linguistic behavior (queries made by shoppers, with items clicked and items not clicked after the query) and catalog meta-data (images, text, pricing information). On this dataset, we ask participants to showcase innovative solutions for two open problems: a recommendation task (where a model is shown some events at the start of a session, and it is asked to predict future product interactions); an intent prediction task, where a model is shown a session containing an add-to-cart event, and it is asked to predict whether the item will be bought before the end of the session.
85 - Jin Chen , Ju Xu , Gangwei Jiang 2021
Advertising creatives are ubiquitous in E-commerce advertisements and aesthetic creatives may improve the click-through rate (CTR) of the products. Nowadays smart advertisement platforms provide the function of compositing creatives based on source m aterials provided by advertisers. Since a great number of creatives can be generated, it is difficult to accurately predict their CTR given a limited amount of feedback. Factorization machine (FM), which models inner product interaction between features, can be applied for the CTR prediction of creatives. However, interactions between creative elements may be more complex than the inner product, and the FM-estimated CTR may be of high variance due to limited feedback. To address these two issues, we propose an Automated Creative Optimization (AutoCO) framework to model complex interaction between creative elements and to balance between exploration and exploitation. Specifically, motivated by AutoML, we propose one-shot search algorithms for searching effective interaction functions between elements. We then develop stochastic variational inference to estimate the posterior distribution of parameters based on the reparameterization trick, and apply Thompson Sampling for efficiently exploring potentially better creatives. We evaluate the proposed method with both a synthetic dataset and two public datasets. The experimental results show our method can outperform competing baselines with respect to cumulative regret. The online A/B test shows our method leads to a 7 increase in CTR compared to the baseline.
125 - Daqing Wu , Xiao Luo , Zeyu Ma 2021
Nowadays, E-commerce is increasingly integrated into our daily lives. Meanwhile, shopping process has also changed incrementally from one behavior (purchase) to multiple behaviors (such as view, carting and purchase). Therefore, utilizing interaction data of auxiliary behavior data draws a lot of attention in the E-commerce recommender systems. However, all existing models ignore two kinds of intrinsic heterogeneity which are helpful to capture the difference of user preferences and the difference of item attributes. First (intra-heterogeneity), each user has multiple social identities with otherness, and these different identities can result in quite different interaction preferences. Second (inter-heterogeneity), each item can transfer an item-specific percentage of score from low-level behavior to high-level behavior for the gradual relationship among multiple behaviors. Thus, the lack of consideration of these heterogeneities damages recommendation rank performance. To model the above heterogeneities, we propose a novel method named intra- and inter-heterogeneity recommendation model (ARGO). Specifically, we embed each user into multiple vectors representing the users identities, and the maximum of identity scores indicates the interaction preference. Besides, we regard the item-specific transition percentage as trainable transition probability between different behaviors. Extensive experiments on two real-world datasets show that ARGO performs much better than the state-of-the-art in multi-behavior scenarios.
Different from shopping at retail stores, consumers on e-commerce platforms usually cannot touch or try products before purchasing, which means that they have to make decisions when they are uncertain about the outcome (e.g., satisfaction level) of p urchasing a product. To study peoples preferences, economics researchers have proposed the hypothesis of Expected Utility (EU) that models the subject value associated with an individuals choice as the statistical expectations of that individuals valuations of the outcomes of this choice. Despite its success in studies of game theory and decision theory, the effectiveness of EU, however, is mostly unknown in e-commerce recommendation systems. Previous research on e-commerce recommendation interprets the utility of purchase decisions either as a function of the consumed quantity of the product or as the gain of sellers/buyers in the monetary sense. As most consumers just purchase one unit of a product at a time and most alternatives have similar prices, such modeling of purchase utility is likely to be inaccurate in practice. In this paper, we interpret purchase utility as the satisfaction level a consumer gets from a product and propose a recommendation framework using EU to model consumers behavioral patterns. We assume that consumer estimates the expected utilities of all the alternatives and choose products with maximum expected utility for each purchase. To deal with the potential psychological biases of each consumer, we introduce the usage of Probability Weight Function (PWF) and design our algorithm based on Weighted Expected Utility (WEU). Empirical study on real-world e-commerce datasets shows that our proposed ranking-based recommendation framework achieves statistically significant improvement against both classical Collaborative Filtering/Latent Factor Models and state-of-the-art deep models in top-K recommendation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا