ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Pr substitution on physical properties of Ce$_{1-x}$Pr$_x$CoGe$_3$ system: A combined experimental and first-principles study

97   0   0.0 ( 0 )
 نشر من قبل Przemys{\\l}aw Skokowski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Skokowski




اسأل ChatGPT حول البحث

We present the results of our investigations of physical properties for the novel Ce$_{1-x}$Pr$_x$CoGe$_3$ system performed with a number of experimental methods: magnetic susceptibility, specific heat, electrical resistivity, magnetoresistance, and thermoelectric power. Moreover, the electronic structure was studied by means of photoelectron spectroscopy measurements and first-principles calculations. All investigated compositions of the Ce$_{1-x}$Pr$_x$CoGe$_3$ series crystallize in the tetragonal BaNiSn$_3$-type structure. The lattice parameters and unit cell volumes decrease with increasing Pr concentration. On the basis of the measurements taken, a preliminary magnetic phase diagram was created. A continuous suppression of the long-range magnetic ordering was observed with increase of Pr concentration. The critical Pr concentration for magnetic moment ordering was determined from linear extrapolation of the ordering temperature $versus$ $x$ to the lowest temperatures ($T = 0$ K) and is equal to about 0.66. Based on the first-principles calculations we show how the substitution of Pr for Ce affects the electronic structure and magnetic properties of the considered alloys. Within a single model we take into account the magnetic ordering, fully-relativistic effects, and Hubbard U repulsion on Ce and Pr. The impact of Hubbard U on the results of calculations is also discussed. We present the valence-band analysis, Mulliken electronic population analysis, and calculated electronic specific heat coefficients. For CeCoGe$_3$ it is found that the $++--$ configuration of magnetic moments on Ce is slightly more stable than the $+-+-$ one, and also that the calculated value of total magnetic moment on Ce (including spin and orbital parts) is in good agreement with the measurements.

قيم البحث

اقرأ أيضاً

Studies of superconductivity in multiband correlated electronic systems has become one of the central topics in condensed matter/materials physics. In this paper, we present the results of thermodynamic measurements on the superconducting filled skut terudite system Pr$_{1-x}$Ce$_x$Pt$_4$Ge$_{12}$ ($ 0 leq x leq 0.2$) to investigate how substitution of Ce at Pr sites affects superconductivity. We find that an increase in Ce concentration leads to a suppression of the superconducting transition temperature from $T_{c}sim 7.9$ K for $x=0$ to $T_csim 0.6$ K for $x=0.14$. Our analysis of the specific heat data for $xleq 0.07$ reveals that superconductivity must develop in at least two bands: the superconducting order parameter has nodes on one Fermi pocket and remains fully gapped on the other. Both the nodal and nodeless gap values decrease, with the nodal gap being suppressed more strongly, with Ce substitution. Ultimately, the higher Ce concentration samples ($x>0.07$) display a nodeless gap only.
The role of slight changes of the chemical composition on antiferromagnetic ordering of Cr in rare-earth orthochoromites was investigated on a series of ceramic solid-solutions Ce$_{1-x}$Eu${_x}$O$_3$ where x varied from 0 to 1. Gradual replacement o f Ce with Eu reduces the cell volume and acts equivalently to applying external pressure. Full replacement of Ce by Eu, on the other hand, reduces the N{e}el temperature from 260 K for CeCrO$_3$ to 178 K for EuCrO$_3$ as established by magnetization, heat capacity and neutron powder diffraction measurements. High resolution x-ray powder diffraction measurements on Ce$_{1-x}$Eu${_x}$O$_3$ and neutron powder diffraction studies on CeCrO$_3$ enable to correlate the magnetic properties of the Cr magnetic subsystem with the size of the lattice and minute changes of the bonding and torsion angles within and between the CrO$_6$ octahedra. We find that the sizes and the shapes of the CrO$6$ octahedra remain essentially unchanged as the size of the rare-earth cations is reduced whereas decreasing Cr - O - Cr bonding angles and increasing inclination of neighboring octahedra enable to compensate for the decreasing lattice size.
Structural, magnetization and heat capacity studies were performed on Ce$_2$(Pd$_{1-x}$Ni$_x$)$_2$Sn ($0 leq x leq 1$) alloys. The substitution of Pd atoms by isoelectronic Ni leads to a change in the crystallographic structure from tetragonal (for $ x leq 0.3$) to centered orthorhombic lattice (for $x geq 0.4$). The volume contraction thorough the series is comparable to the expected from the atomic size ratio between transition metal components. The consequent weak increase of the Kondo temperature drives the two transitions observed in Ce$_2$Pd$_2$Sn to merge at $x = 0.25$. After about a 1% of volume collapse at the structural modification, the system behaves as a weakly magnetic heavy fermion with an enhanced degenerate ground state. Notably, an incipient magnetic transition arises on the Ni-rich size. This unexpected behavior is discussed in terms of an enhancement of the density of states driven by the increase of the $4f$-conduction band hybridization and the incipient contribution of the first excited crystal field doublet on the ground state properties.
95 - S.Y. Zhou , Y. Zhu , M.C. Langner 2011
We present resonant soft X-ray scattering (RSXS) results from small band width manganites (Pr,Ca)MnO$_3$, which show that the CE-type spin ordering (SO) at the phase boundary is stabilized only below the canted antiferromagnetic transition temperatur e and enhanced by ferromagnetism in the macroscopically insulating state (FM-I). Our results reveal the fragility of the CE-type ordering that underpins the colossal magnetoresistance (CMR) effect in this system, as well as an unexpected cooperative interplay between FM-I and CE-type SO which is in contrast to the competitive interplay between the ferromagnetic metallic (FM-M) state and CE-type ordering.
Valency of Ce and Pr in LRu4P12 (L = Ce and Pr) was studied by L2,3-edge x-ray absorption near-edge structure (XANES) spectroscopy. The Ce-L3 XANES spectrum suggests that Ce is mainly trivalent, but the 4f state strongly hybridizes with ligand orbita ls. The band gap of CeRu4P12 seems to be formed by strong hybridization of 4f electrons. Pr-L2 XANES spectra indicate that Pr exists in trivalent state over a wide range in temperature, 20 < T < 300 K. We find that the metal-insulator (MI) transition at TMI = 60 K in PrRu4P12 does not originate from Pr valence fluctuation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا