ترغب بنشر مسار تعليمي؟ اضغط هنا

Vibrationally resolved NO dissociative excitation cross sections by electron impact

262   0   0.0 ( 0 )
 نشر من قبل Vincenzo Laporta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A theoretical investigation of the dissociative excitation by electron impact on the NO molecule is presented, aiming to make up for the lack of data for this process in the literature. A full set of vibrationally-resolved cross sections and corresponding rate coefficients are calculated using the Local-Complex-Potential approach and five resonant states of NO^-.

قيم البحث

اقرأ أيضاً

Motivated by the huge need of data for non-equilibrium plasma modeling, a theoretical investigation of dissociative electron attachment to the NO molecule is performed. The calculations presented here are based on the Local-Complex-Potential approach , taking into account five NO$^-$ resonances. Three specific channels of the process are studied, including the production of excited nitrogen atoms $mathrm{N}(^2mathrm{D})$ and of its anions N$^-$. Interpretation of the existing experimental data and their comparison with our theoretical result are given. A full set of ro-vibrationally-resolved cross sections and the corresponding rate coefficients are reported. In particular, a relatively notably large cross section of N$^-$ ion formation at low energy of the incident electron and for vibrationally excited NO target is predicted. Finally, molecular rotation effects are discussed.
The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transit ions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set of electron scattering data for neutral beryllium, which should be sufficient for most modeling applications.
Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determi nation of reliable erosion diagnostics, helping to characterise the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R-matrix method and, by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88nm line.
196 - D. V. Fursa , S. Trajmar , I. Bray 1999
We have used the convergent close-coupling method and a unitarized first-order many-body theory to calculate integral cross sections for elastic scattering and momentum transfer, for excitation of the 5d^2 ^1S, 6s6p^1P_1, 6s7p^1P_1, 6s8p^1P_1, 6s5d^1 D_2, 5d^2^1D_2, 6s6d^1D_2, 6p5d^1F_3, 6s4f^1F_3, 6p5d^1D_2, 6s6p^3P_{0,1,2}, 6s5d^3D_{1,2,3}, and 6p5d^3D_2 states, for ionization and for total scattering by electron impact on the ground state of barium at incident electron energies from 1 to 1000 eV. These results and all available experimental data have been combined to produce a recommended set of integral cross sections.
60 - Igor Bray 1999
Using the electron-hydrogen scattering Temkin-Poet model we investigate the behavior of the cross sections for excitation of all of the states used in the convergent close-coupling (CCC) formalism. In the triplet channel, it is found that the cross s ection for exciting the positive-energy states is approximately zero near-threshold and remains so until a further energy, equal to the energy of the state, is added to the system. This is consistent with the step-function hypothesis [Bray, Phys. Rev. Lett. {bf 78} 4721 (1997)] and inconsistent with the expectations of Bencze and Chandler [Phys. Rev. A {bf 59} 3129 (1999)]. Furthermore, we compare the results of the CCC-calculated triplet and singlet single differential cross sections with the recent benchmark results of Baertschy et al. [Phys. Rev. A (to be published)], and find consistent agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا