ﻻ يوجد ملخص باللغة العربية
Epitaxial strain provides important pathways to control the magnetic and electronic states in transition metal oxides. However, the large strain is usually accompanied by a strong reduction of the oxygen vacancy formation energy, which hinders the direct manipulation of their intrinsic properties. Here using a post-deposition ozone annealing method, we obtained a series of oxygen stoichiometric SrCoO3 thin films with the tensile strain up to 3.0%. We observed a robust ferromagnetic ground state in all strained thin films, while interestingly the tensile strain triggers a distinct metal to insulator transition along with the increase of the tensile strain. The persistent ferromagnetic state across the electrical transition therefore suggests that the magnetic state is directly correlated with the localized electrons, rather than the itinerant ones, which then calls for further investigation of the intrinsic mechanism of this magnetic compound beyond the double-exchange mechanism.
The enigma of the emergent ferromagnetic state in tensile-strained LaCoO3 thin films remains to be explored because of the lack of a well agreed explanation. The direct magnetic imaging technique using a low-temperature magnetic force microscope (MFM
Due to the complex interplay of magnetic, structural, electronic, and orbital degrees of freedom, biaxial strain is known to play an essential role in the doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown on SrTiO(3) sub
Nickelates are known for their metal to insulator transition (MIT) and an unusual magnetic ordering, occurring at T=T_Neel. Here, we investigate thin films of SmNiO_3 subjected to different levels of epitaxial strain. We find that the original bulk b
Manipulating the orbital occupation of valence electrons via epitaxial strain in an effort to induce new functional properties requires considerations of how changes in the local bonding environment affect the band structure at the Fermi level. Using
A major challenge in condensed matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers enabling access to transient or metastable states that are not thermally accessible.