ﻻ يوجد ملخص باللغة العربية
In this paper, the spacecraft attitude estimation problem has been investigated making use of the concept of matrix Lie group. Through formulation of the attitude and gyroscope bias as elements of SE(3), the corresponding extended Kalman filter, termed as SE(3)-EKF, has been derived. It is shown that the resulting SE(3)-EKF is just the newly-derived geometric extended Kalman filter (GEKF) for spacecraft attitude estimation. This provides a new perspective on the GEKF besides the common frame errors definition. Moreover, the SE(3)-EKF with reference frame attitude error is also derived and the resulting algorithm bears much resemblance to the right invariant EKF.
Inertial measurement units are widely used in different fields to estimate the attitude. Many algorithms have been proposed to improve estimation performance. However, most of them still suffer from 1) inaccurate initial estimation, 2) inaccurate ini
Many state estimation algorithms must be tuned given the state space process and observation models, the process and observation noise parameters must be chosen. Conventional tuning approaches rely on heuristic hand-tuning or gradient-based optimizat
With the recent advance of deep learning based object recognition and estimation, it is possible to consider object level SLAM where the pose of each object is estimated in the SLAM process. In this paper, based on a novel Lie group structure, a righ
In this paper, we propose an approach to address the problems with ambiguity in tuning the process and observation noises for a discrete-time linear Kalman filter. Conventional approaches to tuning (e.g. using normalized estimation error squared and
We introduce a new hybrid control strategy, which is conceptually different from the commonly used synergistic hybrid approaches, to efficiently deal with the problem of the undesired equilibria that precludes smooth vectors fields on $SO(3)$ from ac