ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical Framework of Beamwidth Selection for RT-ICM Millimeter-Wave Clusters

165   0   0.0 ( 0 )
 نشر من قبل Yavuz Yaman
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Beamforming for mmWave communications is well-studied in the PHY based on the channel parameters to develop optimum receiver processing techniques. However, even before signal processing, antenna structure and radiation parameters affect the beamforming performance primarily. For example, in contrast to common belief, narrow beamwidth (bmW) may result in degraded beamforming performance. In order to address the impairments such as beam misalignments, outage loss, tracking inability, blockage, etc., an optimum value of the bmW must be determined. In this paper, assuming a communication system that creates a beam per cluster, we theoretically investigate the bmW and received power relation in the cluster level mmWave channels. We adopt ULA structure and formulate its antenna gain with respect to the bmW. Two beam models are considered for the main lobe of the array pattern, rectangular and triangular. We derive bmW-dependent extracted power expressions for two intra-cluster channel models, 802.11ad and our previous work, RT-ICM. Combining antenna and channel gains, in case of a beam misalignment, we find that the optimum bmW that maximizes the received power is larger than the alignment error when the error itself is larger than the standard deviation of the cluster power-angle spectrum. Once the alignment error is smaller than the standard deviation, we confirm that the optimum bmW converges zero. Performing asymptotic analysis of the received power, we give the formulation and insights that the practical nonzero bmW values can be achieved although sacrificing subtle from the maximum received power. Our analysis shows that to reach 95% of the maximum power for an indoor mmWave cluster, a practical bmW of 7-10 degrees is enough, which can be created with 18-20 antenna elements. In the simulation section, we show that the expressions given by the analysis match to the simulated results.



قيم البحث

اقرأ أيضاً

Beamforming is the primary technology to overcome the high path loss in millimeter-wave (mmWave) channels. Hence, performance improvement needs knowledge and control of the spatial domain. In particular, antenna structure and radiation parameters aff ect the beamforming performance in mmWave communications systems. In order to address the impairments such as beam misalignments, outage loss, tracking inability, blockage, etc., an optimum value of the beamwidth must be determined. In our previous paper, assuming a communication system that creates a beam per cluster, we theoretically investigated the beamwidth-received power relation in the cluster level mmWave channels. We used uniform linear array (ULA) antenna in our analysis. In this paper, we revisit the analysis and update the expressions for the scenario where we use rectangular uniform planar array (R-UPA) antenna. Rectangular beam model is considered to approximate the main lobe pattern of the antenna. For the channel, we derive beamwidth-dependent extracted power expressions for two intra-cluster channel models, IEEE 802.11ad and our previous work based on ray-tracing (RT-ICM). Combining antenna and channel gains, in case of the perfect alignment, we confirm that the optimum beamwidth converges zero. Performing asymptotic analysis of the received power, we give the formulation and insights that the practical nonzero beamwidth values can be achieved although sacrificing subtle from the maximum received power. Our analysis shows that to reach 95% of the maximum power for a typical indoor mmWave cluster, a practical beamwidth of 3.5 deg is enough. Finally, our analysis results show that there is a 13 dB increase in the maximum theoretical received power when UPA is used over ULA. We show that an 8 x 8 UPA can reach 50% of that maximum received power while the received power is still 10 dB larger than the ULA scenario.
The densely packed antennas of millimeter-Wave (mmWave) MIMO systems are often blocked by the rain, snow, dust and even by fingers, which will change the channels characteristics and degrades the systems performance. In order to solve this problem, w e propose a cross-entropy inspired antenna array diagnosis detection (CE-AAD) technique by exploiting the correlations of adjacent antennas, when blockages occur at the transmitter. Then, we extend the proposed CE-AAD algorithm to the case, where blockages occur at transmitter and receiver simultaneously. Our simulation results show that the proposed CE-AAD algorithm outperforms its traditional counterparts.
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional to the codebook size. To improve the efficiency of beam tracking, we propose a beam tracking scheme based on the channel fingerprint database, which comprises mappings between statistical beamforming gains and user locations. The scheme tracks user movement by utilizing the trained beam configurations and estimating the gains of beam configurations that are not trained. Simulations show that the proposed scheme achieves significant beamforming performance gains over existing beam tracking schemes.
Conventional beamforming is based on channel estimation, which can be computationally intensive and inaccurate when the antenna array is large. In this work, we study the outage probability of positioning-assisted beamforming systems. Closed-form out age probability bounds are derived by considering positioning error, link distance and beamwidth. Based on the analytical result, we show that the beamwidth should be optimized with respect to the link distance and the transmit power, and such optimization significantly suppresses the outage probability.
In millimeter-wave (mmWave) channels, to overcome the high path loss, beamforming is required. Hence, the spatial representation of the channel is essential. Further, for accurate beam alignment and minimizing the outages, inter-beam interferences, e tc., cluster-level spatial modeling is also necessary. Since, statistical channel models fail to reproduce the intra-cluster parameters due to the site-specific nature of the mmWave channel, in this paper, we propose a ray tracing intra-cluster model (RT-ICM) for mmWave channels. The model considers only the first-order reflection; thereby reducing the computation load while capturing most of the energy in a large number of important cases. The model accounts for diffuse scattering as it contributes significantly to the received power. Finally, since the clusters are spatially well-separated due to the sparsity of first-order reflectors, we generalize the intra-cluster model to the mmWave channel model via replication. Since narrow beamwidth increases the number of single-order clusters, we show that the proposed model suits well to MIMO and massive MIMO applications. We illustrate that the model gives matching results with published measurements made in a classroom at 60 GHz. For this specific implementation, while the maximum cluster angle of arrival (AoA) error is 1 degree, mean angle spread error is 9 degrees. The RMS error for the cluster peak power is found to be 2.2 dB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا