ترغب بنشر مسار تعليمي؟ اضغط هنا

Far from equilibrium dynamics of tracer particles embedded in a growing multicellular spheroid

272   0   0.0 ( 0 )
 نشر من قبل Sumit Sinha
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By embedding inert tracer particles (TPs) in a growing multicellular spheroid the local stresses on the cancer cells (CCs) can be measured. In order for this technique to be effective the unknown effect of the dynamics of the TPs on the CCs has to be elucidated to ensure that the TPs do not greatly alter the local stresses on the CCs. We show, using theory and simulations, that the self-generated (active) forces arising from proliferation and apoptosis of the CCs drive the dynamics of the TPs far from equilibrium. On time scales less than the division times of the CCs, the TPs exhibit sub-diffusive dynamics (the mean square displacement, $Delta_{TP}(t) sim t^{beta_{TP}}$ with $beta_{TP}<1$), similar to glass-forming systems. Surprisingly, in the long-time limit, the motion of the TPs is hyper-diffusive ($Delta_{TP}(t) sim t^{alpha_{TP}}$ with $alpha_{TP}>2$) due to persistent directed motion for long times. In comparison, proliferation of the CCs randomizes their motion leading to superdiffusive behavior with $alpha_{CC}$ exceeding unity. Most importantly, $alpha_{CC}$ is not significantly affected by the TPs. Our predictions could be tested using textit{in vitro} imaging methods where the motion of the TPs and the CCs can be tracked.



قيم البحث

اقرأ أيضاً

We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polym erization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a non-monotonic function of the elastic constant $mu$, and reaches a peak at $mu=mu^ast$. For $mu < mu^ast$ the system fails to reach a steady state and the membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant $ u$ for all nonzero values of $ u$. Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time-scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.
The DNA molecule, apart from carrying the genetic information, plays a crucial role in a variety of biological processes and find applications in drug design, nanotechnology and nanoelectronics. The molecule undergoes significant structural transitio ns under the influence of forces due to physiological and non-physiological environments. Here, we summarize the insights gained from simulations and single-molecule experiments on the structural transitions and mechanics of DNA under force, as well as its elastic properties, in various environmental conditions, and discuss appealing future directions.
Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to n on-invasively track equilibrium and non-equilibrium fluctuations in such biopolymer networks. Here we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under non-equilibrium driving. This effective mode coupling results in non-zero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.
We investigate the effect of stress fluctuations on the stochastic dynamics of an inclusion embedded in a viscous gel. We show that, in non-equilibrium systems, stress fluctuations give rise to an effective attraction towards the boundaries of the co nfining domain, which is reminiscent of an active Casimir effect. We apply this generic result to the dynamics of deformations of the cell nucleus and we demonstrate the appearance of a fluctuation maximum at a critical level of activity, in agreement with recent experiments [E. Makhija, D. S. Jokhun, and G. V. Shivashankar, Proc. Natl. Acad. Sci. U.S.A. 113, E32 (2016)].
Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dominance of short-range forces closely links collective motion in bacterial suspensions to self-organization in driven granular systems, assemblages of biofilaments, and animal flocks. For the scattering of bacteria with surfaces, long-range fluid dynamical interactions are also shown to be negligible before collisions; however, once the bacterium swims along the surface within a few microns after an aligning collision, hydrodynamic effects can contribute to the experimentally observed, long residence times. As these results are based on purely mechanical properties, they apply to a wide range of microorganisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا