ﻻ يوجد ملخص باللغة العربية
Vehicular cloud computing has emerged as a promising solution to fulfill users demands on processing computation-intensive applications in modern driving environments. Such applications are commonly represented by graphs consisting of components and edges. However, encouraging vehicles to share resources poses significant challenges owing to users selfishness. In this paper, an auction-based graph job allocation problem is studied in vehicular cloud-assisted networks considering resource reutilization. Our goal is to map each buyer (component) to a feasible seller (virtual machine) while maximizing the buyers utility-of-service, which concerns the execution time and commission cost. First, we formulate the auction-based graph job allocation as an integer programming (IP) problem. Then, a Vickrey-Clarke-Groves based payment rule is proposed which satisfies the desired economical properties, truthfulness and individual rationality. We face two challenges: 1) the above-mentioned IP problem is NP-hard; 2) one constraint associated with the IP problem poses addressing the subgraph isomorphism problem. Thus, obtaining the optimal solution is practically infeasible in large-scale networks. Motivated by which, we develop a structure-preserved matching algorithm by maximizing the utility-of-service-gain, and the corresponding payment rule which offers economical properties and low computation complexity. Extensive simulations demonstrate that the proposed algorithm outperforms the benchmark methods considering various problem sizes.
The software defined air-ground integrated vehicular (SD-AGV) networks have emerged as a promising paradigm, which realize the flexible on-ground resource sharing to support innovative applications for UAVs with heavy computational overhead. In this
Software-defined internet of vehicles (SDIoV) has emerged as a promising paradigm to realize flexible and comprehensive resource management, for next generation automobile transportation systems. In this paper, a vehicular cloud computing-based SDIoV
In the era of big-data, the jobs submitted to the clouds exhibit complicated structures represented by graphs, where the nodes denote the sub-tasks each of which can be accommodated at a slot in a server, while the edges indicate the communication co
Artificial Intelligence (AI) and Internet of Things (IoT) applications are rapidly growing in todays world where they are continuously connected to the internet and process, store and exchange information among the devices and the environment. The cl
Autonomous driving (auto-driving) has been becoming a killer technology for next generation vehicles, whereas some fatal accidents grow concerns about its safety. A fundamental function for safer auto-driving is to recognize the vehicles locations, t