ﻻ يوجد ملخص باللغة العربية
The serration of grain boundaries in Inconel 600 caused by heat treatment is studied systematically. A new method based on Fourier transforms is used to analyse the multiple wave-like character of the serrated grain boundaries. A new metric -- the serration index -- is devised and utilised to quantify the degree of serration and more generally to distinguish objectively between serrated and non-serrated boundaries. By considering the variation of the serration index with processing parameters, a causal relationship between degree of serration and solution treatment/cooling rate is elucidated. Processing maps for the degree of serration are presented. Two distinct formation mechanisms arise which rely upon grain boundary interaction with carbides: (i) Zener-type dragging which hinders grain boundary migration and (ii) a faceted carbide growth-induced serration.
While it is known that alloy components can segregate to grain boundaries (GBs), and that the atomic mobility in GBs greatly exceeds the atomic mobility in the lattice, little is known about the effect of GB segregation on GB diffusion. Atomistic com
We use variable-pressure neutron and X-ray diffraction measurements to determine the uniaxial and bulk compressibilities of nickel(II) cyanide, Ni(CN)$_2$. Whereas other layered molecular framework materials are known to exhibit negative area compres
Mg grain boundary (GB) segregation and GB diffusion can impact the processing and properties of Al-Mg alloys. Yet, Mg GB diffusion in Al has not been measured experimentally or predicted by simulations. We apply atomistic computer simulations to pred
A detailed theoretical and numerical investigation of the infinitesimal single-crystal gradient plasticity and grain-boundary theory of Gurtin (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary
We describe a molecular dynamics framework for the direct calculation of the short-ranged structural forces underlying grain-boundary premelting and grain-coalescence in solidification. The method is applied in a comparative study of (i) a Sigma 9 <1