ﻻ يوجد ملخص باللغة العربية
Weakly-supervised temporal action localization is a problem of learning an action localization model with only video-level action labeling available. The general framework largely relies on the classification activation, which employs an attention model to identify the action-related frames and then categorizes them into different classes. Such method results in the action-context confusion issue: context frames near action clips tend to be recognized as action frames themselves, since they are closely related to the specific classes. To solve the problem, in this paper we propose to model the class-agnostic frame-wise probability conditioned on the frame attention using conditional Variational Auto-Encoder (VAE). With the observation that the context exhibits notable difference from the action at representation level, a probabilistic model, i.e., conditional VAE, is learned to model the likelihood of each frame given the attention. By maximizing the conditional probability with respect to the attention, the action and non-action frames are well separated. Experiments on THUMOS14 and ActivityNet1.2 demonstrate advantage of our method and effectiveness in handling action-context confusion problem. Code is now available on GitHub.
Weakly-supervised temporal action localization aims to learn detecting temporal intervals of action classes with only video-level labels. To this end, it is crucial to separate frames of action classes from the background frames (i.e., frames not bel
Weakly-supervised temporal action localization aims to localize action instances temporal boundary and identify the corresponding action category with only video-level labels. Traditional methods mainly focus on foreground and background frames separ
Weakly-Supervised Temporal Action Localization (WS-TAL) task aims to recognize and localize temporal starts and ends of action instances in an untrimmed video with only video-level label supervision. Due to lack of negative samples of background cate
Temporal Action Localization (TAL) in untrimmed video is important for many applications. But it is very expensive to annotate the segment-level ground truth (action class and temporal boundary). This raises the interest of addressing TAL with weak s
Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and