ﻻ يوجد ملخص باللغة العربية
Matrix Product States form the basis of powerful simulation methods for ground state problems in one dimension. Their power stems from the fact that they faithfully approximate states with a low amount of entanglement, the area law. In this work, we establish the mixed state analogue of this result: We show that one-dimensional mixed states with a low amount of entanglement, quantified by the entanglement of purification, can be efficiently approximated by Matrix Product Density Operators (MPDOs). In combination with results establishing area laws for thermal states, this helps to put the use of MPDOs in the simulation of thermal states on a formal footing.
Simulating quantum circuits with classical computers requires resources growing exponentially in terms of system size. Real quantum computer with noise, however, may be simulated polynomially with various methods considering different noise models. I
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced by F. Verstraete et al. in 2005 and characterize the tensors corresponding to the fixe
We devise a numerical scheme for the time evolution of matrix product operators by adapting the time-dependent variational principle for matrix product states [J. Haegeman et al, Phys. Rev. B 94, 165116 (2016)]. A simple augmentation of the initial o
The phenomenon of many-body localisation received a lot of attention recently, both for its implications in condensed-matter physics of allowing systems to be an insulator even at non-zero temperature as well as in the context of the foundations of q
We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs (thermal) state. The classical analog of this problem, known as learning graphical models or Boltzmann machines, is a well-studied question in