ﻻ يوجد ملخص باللغة العربية
Motivated by Horns log-majorization (singular value) inequality $s(AB)underset{log}{prec} s(A)*s(B)$ and the related weak-majorization inequality $s(AB)underset{w}{prec} s(A)*s(B)$ for square complex matrices, we consider their Hermitian analogs $lambda(sqrt{A}Bsqrt{A}) underset{log}{prec} lambda(A)*lambda(B)$ for positive semidefinite matrices and $lambda(|Acirc B|) underset{w}{prec} lambda(|A|)*lambda(|B|)$ for general (Hermitian) matrices, where $Acirc B$ denotes the Jordan product of $A$ and $B$ and $*$ denotes the componentwise product in $R^n$. In this paper, we extended these inequalities to the setting of Euclidean Jordan algebras in the form $lambdabig (P_{sqrt{a}}(b)big )underset{log}{prec} lambda(a)*lambda(b)$ for $a,bgeq 0$ and $lambdabig (|acirc b|big )underset{w}{prec} lambda(|a|)*lambda(|b|)$ for all $a$ and $b$, where $P_u$ and $lambda(u)$ denote, respectively, the quadratic representation and the eigenvalue vector of an element $u$. We also describe inequalities of the form $lambda(|Abullet b|)underset{w}{prec} lambda({mathrm{diag}}(A))*lambda(|b|)$, where $A$ is a real symmetric positive semidefinite matrix and $A,bullet, b$ is the Schur product of $A$ and $b$. In the form of an application, we prove the generalized H{o}lder type inequality $||acirc b||_pleq ||a||_r,||b||_s$, where $||x||_p:=||lambda(x)||_p$ denotes the spectral $p$-norm of $x$ and $p,q,rin [1,infty]$ with $frac{1}{p}=frac{1}{r}+frac{1}{s}$. We also give precise values of the norms of the Lyapunov transformation $L_a$ and $P_a$ relative to two spectral $p$-norms.
Denote by $P_n$ the set of $ntimes n$ positive definite matrices. Let $D = D_1oplus dots oplus D_k$, where $D_1in P_{n_1}, dots, D_k in P_{n_k}$ with $n_1+cdots + n_k=n$. Partition $Cin P_n$ according to $(n_1, dots, n_k)$ so that $Diag C = C_1oplus
Given a linear map $T$ on a Euclidean Jordan algebra of rank $n$, we consider the set of all nonnegative vectors $q$ in $R^n$ with decreasing components that satisfy the pointwise weak-majorization inequality $lambda(|T(x)|)underset{w}{prec}q*lambda(
The purpose of this paper is two-fold: we present some matrix inequalities of log-majorization type for eigenvalues indexed by a sequence; we then apply our main theorem to generalize and improve the Hua-Marcus inequalities. Our results are stronger and more general than the existing ones.
Let V be a Euclidean Jordan algebra of rank n. The eigenvalue map from V to R^n takes any element x in V to the vector of eigenvalues of x written in the decreasing order. A spectral set in V is the inverse image of a permutation set in R^n under the
For $alpha,z>0$ with $alpha e1$, motivated by comparison between different kinds of Renyi divergences in quantum information, we consider log-majorization between the matrix functions begin{align*} P_alpha(A,B)&:=B^{1/2}(B^{-1/2}AB^{-1/2})^alpha B^{1