ﻻ يوجد ملخص باللغة العربية
This paper discusses the hardness of finding minimal good-for-games (GFG) Buchi, Co-Buchi, and parity automata with state based acceptance. The problem appears to sit between finding small deterministic and finding small nondeterministic automata, where minimality is NP-complete and PSPACE-complete, respectively. However, recent work of Radi and Kupferman has shown that minimising Co-Buchi automata with transition based acceptance is tractable, which suggests that the complexity of minimising GFG automata might be cheaper than minimising deterministic automata. We show for the standard state based acceptance that the minimality of a GFG automaton is NP-complete for Buchi, Co-Buchi, and parity GFG automata. The proofs are a surprisingly straight forward generalisation of the proofs from deterministic Buchi automata: they use a similar reductions, and the same hard class of languages.
In GFG automata, it is possible to resolve nondeterminism in a way that only depends on the past and still accepts all the words in the language. The motivation for GFG automata comes from their adequacy for games and synthesis, wherein general nonde
We characterize the class of nondeterministic ${omega}$-automata that can be used for the analysis of finite Markov decision processes (MDPs). We call these automata `good-for-MDPs (GFM). We show that GFM automata are closed under classic simulation
In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an $m times n$ grid of cells, where each cell possibly contains a clue among +, -, |. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exac
Rikudo is a number-placement puzzle, where the player is asked to complete a Hamiltonian path on a hexagonal grid, given some clues (numbers already placed and edges of the path). We prove that the game is complete for NP, even if the puzzle has no h
Zero automata are a probabilistic extension of parity automata on infinite trees. The satisfiability of a certain probabilistic variant of mso, called tmso + zero, reduces to the emptiness problem for zero automata. We introduce a variant of zero aut