ﻻ يوجد ملخص باللغة العربية
Solar filaments are dark structures on the solar disk, with an elongated spine and several barbs extending out from the spine. When appearing above the solar limb, a filament is called a prominence, with several feet extending down to the solar surface. It was generally thought that filament barbs are simply the prominence feet veering away from the spine and down to the solar surface. However, it was recently noticed that there might be another dynamic type of barbs, which were proposed to be due to filament thread longitudinal oscillation. If this is the case, the dynamic barbs would not extend down to the solar surface. With the quadrature observations of a filament barb on 2011 June 5 from the {it Solar Dynamics Observatory} and the {it STEREO} satellites, we confirm that the filament barb is due to filament thread longitudinal oscillations. Viewed from the side, the filament barb looks like an appendix along the spine of the prominence, and does not extend down to the solar surface as a foot.
We study recent observations of propagating fluctuations in a prominence foot with Hinode Solar Optical Telescope (SOT) high-resolution observations in Ca~II and H alpha emission which we identify as nonlinear fast magnetosnic waves. Here we analyze
We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the unweighted undirected graph concept and adopt the Dijkstra shortest-path algorithm to recognize the filament spine. Then,
Several mechanisms have been proposed to account for the formation of solar prominences or filaments, among which direct injection and evaporation-condensation models are the two most popular ones. In the direct injection model, cold plasma is ejecte
From recent high resolution observations obtained with the Swedish 1 m Solar Telescope in La Palma, we detect swaying motions of individual filament threads in the plane of the sky. The oscillatory character of these motions are comparable with oscil
We present a statistical study of prominence and filament eruptions observed by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO). Several properties are recorded for 904 events that were culled from the Heliophysics