ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of the traveling wave burning on epithermal neutrons on the year time scale

42   0   0.0 ( 0 )
 نشر من قبل Victor Tarasov
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the newly obtained results of two computer simulations of the epithermal neutron-nuclear burning in natural uranium. Each of them modeled the period of six months of the traveling wave reactor (TWR) operation -- for two different flux densities of an external neutron source. The simulation results confirm the existence of a nuclear burning wave at longer time scales, and reveal the dependence of the wave burning modes on the parameters of an external neutron source.

قيم البحث

اقرأ أيضاً

For a fissile medium, originally consisting of uranium-238, the investigation of fulfillment of the wave burning criterion in a wide range of neutron energies is conducted for the first time, and a possibility of wave nuclear burning not only in the region of fast neutrons, but also for cold, epithermal and resonance ones is discovered for the first time. For the first time the results of the investigation of the Feoktistov criterion fulfillment for a fissile medium, originally consisting of uranium-238 dioxide with enrichments 4.38%, 2.00%, 1.00%, 0.71% and 0.50% with respect to uranium-235, in the region of neutron energies 0.015-10.0eV are presented. These results indicate a possibility of ultraslow wave neutron-nuclear burning mode realization in the uranium-plutonium media, originally (before the wave initiation by external neutron source) having enrichments with respect to uranium-235, corresponding to the subcritical state, in the regions of cold, thermal, epithermal and resonance neutrons. In order to validate the conclusions, based on the slow wave neutron-nuclear burning criterion fulfillment depending on the neutron energy, the numerical modeling of ultraslow wave neutron-nuclear burning of a natural uranium in the epithermal region of neutron energies (0.1-7.0eV) was conducted for the first time. The presented simulated results indicate the realization of the ultraslow wave neutron-nuclear burning of the natural uranium for the epithermal neutrons.
On the basis of the condition for nuclear burning wave existence in the neutron-multiplicating media (U-Pu and Th-U cycles) we show the possibility of surmounting the so-called dpa-parameter problem, and suggest an algorithm of the optimal nuclear bu rning wave mode adjustment, which is supposed to yield the wave parameters (fluence/neutron flux, width and speed of nuclear burning wave) that satisfy the dpa-condition associated with the tolerable level of the reactor materials radioactive stability, in particular that of the cladding materials. It is shown for the first time that the capture and fission cross-sections of $^{238}$U and $^{239}$Pu increase with temperature within 1000-3000K range, which under certain conditions may lead to a global loss of the nuclear burning wave stability. Some variants of the possible stability loss due to the so-called blow-up modes (anomalous nuclear fuel temperature and neutron flow evolution) are discussed and are found to possibly become a reason for a trivial violation of the traveling wave reactor internal safety.
We consider a model of neutron-nuclear wave burning. The wave of nuclear burning of the medium is initiated by an external neutron source and is the basis for the new generation reactors -- the so-called traveling-wave reactors. We develop a model of nuclear wave burning, for which it is possible to draw an analogy with a mechanical dissipative system. Within the framework of the new model, we show that two burning modes are possible depending on the control parameters: a traveling autowave and a wave driven by an external neutron source. We find the autowave to be possible for certain neutron energies only, and the wave velocity has a continuous spectrum bounded below.
We propose a multi-particle self-consistent Hamiltonian (derived from an N-body description) that is applicable for periodic structures such as traveling-wave tubes (TWTs), gyrotrons, free-electron lasers, or particle accelerators. We build a 1D symp lectic multi-particle algorithm to simulate the nonlinear wave-particle interaction in the time domain occurring in an experimental 3-meters long helix TWT. Our algorithm is efficient thanks to a drastic reduction model. A 3D helix version of our reduction model is provided. Finally, we establish an explicit expression of the electromagnetic power in the time domain and in non-monochromatic (non-continuous waveform) regime.
434 - Stephane Theveny 2016
We discuss the envelope modulation assumption of frequency-domain models of traveling wave tubes (TWTs) and test its consistency with the Maxwell equations. We compare the predictions of usual frequency-domain models with those of a new time domain model of the TWT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا