ﻻ يوجد ملخص باللغة العربية
In this paper, we target refining the boundaries in high resolution images given low resolution masks. For memory and computation efficiency, we propose to convert the regions of interest into strip images and compute a boundary prediction in the strip domain. To detect the target boundary, we present a framework with two prediction layers. First, all potential boundaries are predicted as an initial prediction and then a selection layer is used to pick the target boundary and smooth the result. To encourage accurate prediction, a loss which measures the boundary distance in the strip domain is introduced. In addition, we enforce a matching consistency and C0 continuity regularization to the network to reduce false alarms. Extensive experiments on both public and a newly created high resolution dataset strongly validate our approach.
Modern high-resolution satellite sensors collect optical imagery with ground sampling distances (GSDs) of 30-50cm, which has sparked a renewed interest in photogrammetric 3D surface reconstruction from satellite data. State-of-the-art reconstruction
State-of-the-art semantic segmentation methods were almost exclusively trained on images within a fixed resolution range. These segmentations are inaccurate for very high-resolution images since using bicubic upsampling of low-resolution segmentation
We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3 adapts denoising diffusion probabilistic models to conditional image generation and performs super-resolution through a stochastic denoising process. Inference starts
In this report, we present our solution for the task of temporal action localization (detection) (task 1) in ActivityNet Challenge 2020. The purpose of this task is to temporally localize intervals where actions of interest occur and predict the acti
Image matting is a key technique for image and video editing and composition. Conventionally, deep learning approaches take the whole input image and an associated trimap to infer the alpha matte using convolutional neural networks. Such approaches s