ﻻ يوجد ملخص باللغة العربية
We use inelastic neutron scattering to study the effect of a magnetic field on the neutron spin resonance (Er = 3.6 meV) of superconducting FeSe (Tc = 9 K). While a field aligned along the in-plane direction broadens and suppresses the resonance, a c-axis aligned field does so much more efficiently, consistent with the anisotropic field-induced suppression of the superfluid density from the heat capacity measurements. These results suggest that the resonance in FeSe is associated with the superconducting electrons arising from orbital selective quasi-particle excitations between the hole and electron Fermi surfaces.
In zero magnetic field, the famous neutron spin resonance in the f-electron superconductor CeCoIn5 is similar to the recently discovered exciton peak in the non-superconducting CeB6. Magnetic field splits the resonance in CeCoIn5 into two components,
We use inelastic neutron scattering to study the effect of an in-plane magnetic field on the magnetic resonance in optimally doped superconductors FeSe$_{0.4}$Te$_{0.6}$ ($T_c=14$ K) and BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ ($T_c=20$ K). While the magnetic
The search for topological spin excitations in recently discovered two-dimensional (2D) van der Waals (vdW) magnetic materials is important because of their potential applications in dissipation-less spintronics. In the 2D vdW ferromagnetic (FM) hone
The generation of high frequency oscillatory magnetic fields represents a fundamental component underlying the successful implementation of neutron resonant spin-echo spectrometers, a class of instrumentation critical for the high-resolution extracti
In this letter we describe the ground-state magnetic structure of the highly anisotropic helimagnet Cr$_{1/3}$NbS$_2$ in a magnetic field. A Heisenberg spin model with Dyzaloshinkii-Moriya interactions and magne- tocrystalline anisotropy allows the g