ﻻ يوجد ملخص باللغة العربية
We present a concept for control of the ion polarization, called a transparent spin method. The spin transparency is achieved by designing such a synchrotron structure that the net spin rotation angle in one particle turn is zero. The polarization direction of any ions including deuterons can be efficiently controlled using weak quasi-static fields. These fields allow for dynamic adjustment of the polarization direction during an experiment. The main features of the Transparent Spin method are illustrated in a figure-8 collider. The results are relevant to the Electron-Ion Collider considered in the US, the ion-ion collider NICA constructed in Russia, and a polarized Electron-ion collider planned in China.
The paper provides mathematics and physics considerations concerning a special class of electron spin manipulating structures for future Electron-Ion Collider (EIC) projects. These structures, which we call Universal Synchronous Spin Rotators (USSR),
We study methods for reconstructing the momenta of invisible particles in cascade decay chains at hadron colliders. We focus on scenarios, such as SUSY and UED, in which new physics particles are pair produced. Their subsequent decays lead to two dec
We discuss the spin properties of top quark pairs produced at hadron colliders at next-to-leading order in the coupling constant alpha_s of the strong interaction. Specifically we present, for some decay channels, results for differential angular dis
Magnetic and mechanical designs of a Nb3Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a l
This submission was withdrawn because of an unresolved dispute between the authors [arXiv admin 2009-4-13].