ﻻ يوجد ملخص باللغة العربية
Photospheric emission may originate from relativistic outflows in two qualitatively different regimes: last scattering of photons inside the outflow at the photospheric radius, or radiative diffusion to the boundary of the outflow. In this work the measurement of temperature and flux of the thermal component in the early afterglows of several gamma-ray bursts (GRBs) along with the total flux in the prompt phase are used to determine initial radii of the outflow as well as its Lorentz factors. Results indicate that in some cases the outflow has relatively low Lorentz factors $Gamma<10$, favouring cocoon interpretation, while in other cases Lorentz factors are larger $Gamma>10$, indicating diffusive photospheric origin of the thermal component, associated with an ultrarelativistic outflow.
It is now more than 40 years since the discovery of gamma-ray bursts (GRBs) and in the last two decades there has been major progress in the observations of bursts, the afterglows and their host galaxies. This recent progress has been fueled by the a
We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emiss
Gamma-ray bursts (GRBs) display a bimodal duration distribution, with a separation between the short- and long-duration bursts at about 2 sec. The progenitors of long GRBs have been identified as massive stars based on their association with Type Ic
We estimate the bulk Lorentz factor Gamma_0 of 31 GRBs using the measured peak time of their afterglow light curves. We consider two possible scenarios for the estimate of Gamma_0: the case of a homogeneous circumburst medium or a wind density profil
GRB spectra appear non-thermal, but recent observations of a few bursts with Fermi GBM have confirmed previous indications from BATSE of the presence of an underlying thermal component. Photospheric emission is indeed expected when the relativistic o