ﻻ يوجد ملخص باللغة العربية
We show that there are $2^{2^{aleph_0}}$ different closed ideals in the Banach algebra $L(L_p(0,1))$, $1<p ot= 2<infty$. This solves a problem in A. Pietschs 1978 book Operator Ideals. The proof is quite different from other methods of producing closed ideals in the space of bounded operators on a Banach space; in particular, the ideals are not contained in the strictly singular operators and yet do not contain projections onto subspaces that are non Hilbertian. We give a criterion for a space with an unconditional basis to have $2^{2^{aleph_0}}$ closed ideals in terms of the existence of a single operator on the space with some special asymptotic properties. We then show that for $1<q<2$ the space ${frak X}_q$ of Rosenthal, which is isomorphic to a complemented subspace of $L_q(0,1)$, admits such an operator.
We study the class of functions $f$ on $mathbb{R}$ satisfying a Lipschitz estimate in the Schatten ideal $mathcal{L}_p$ for $0 < p leq 1$. The corresponding problem with $pgeq 1$ has been extensively studied, but the quasi-Banach range $0 < p < 1$ is
This article - a part of a multipaper project investigating arithmetic mean ideals - investigates the codimension of commutator spaces [I, B(H)] of operator ideals on a separable Hilbert space, i.e., ``How many traces can an ideal support? We conject
A Banach space X has the SHAI (surjective homomorphisms are injective) property provided that for every Banach space Y, every continuous surjective algebra homomorphism from the bounded linear operators on X onto the bounded linear operators on Y is
For a general measure space $(Omega,mu)$, it is shown that for every band $M$ in $L_p(mu)$ there exists a decomposition $mu=mu+mu^{primeprime}$ such that $M=L_p(mu)={fin L_p(mu);f=0 mu^{primeprime}text{-a.e.}}$. The theory is illustrated by an example, with an application to absorption semigroups.
Given a densely defined and closed operator $A$ acting on a complex Hilbert space $mathcal{H}$, we establish a one-to-one correspondence between its closed extensions and subspaces $mathfrak{M}subsetmathcal{D}(A^*)$, that are closed with respect to t