ترغب بنشر مسار تعليمي؟ اضغط هنا

MaskFlownet: Asymmetric Feature Matching with Learnable Occlusion Mask

122   0   0.0 ( 0 )
 نشر من قبل Shengyu Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Feature warping is a core technique in optical flow estimation; however, the ambiguity caused by occluded areas during warping is a major problem that remains unsolved. In this paper, we propose an asymmetric occlusion-aware feature matching module, which can learn a rough occlusion mask that filters useless (occluded) areas immediately after feature warping without any explicit supervision. The proposed module can be easily integrated into end-to-end network architectures and enjoys performance gains while introducing negligible computational cost. The learned occlusion mask can be further fed into a subsequent network cascade with dual feature pyramids with which we achieve state-of-the-art performance. At the time of submission, our method, called MaskFlownet, surpasses all published optical flow methods on the MPI Sintel, KITTI 2012 and 2015 benchmarks. Code is available at https://github.com/microsoft/MaskFlownet.

قيم البحث

اقرأ أيضاً

Data association across frames is at the core of Multiple Object Tracking (MOT) task. This problem is usually solved by a traditional graph-based optimization or directly learned via deep learning. Despite their popularity, we find some points worth studying in current paradigm: 1) Existing methods mostly ignore the context information among tracklets and intra-frame detections, which makes the tracker hard to survive in challenging cases like severe occlusion. 2) The end-to-end association methods solely rely on the data fitting power of deep neural networks, while they hardly utilize the advantage of optimization-based assignment methods. 3) The graph-based optimization methods mostly utilize a separate neural network to extract features, which brings the inconsistency between training and inference. Therefore, in this paper we propose a novel learnable graph matching method to address these issues. Briefly speaking, we model the relationships between tracklets and the intra-frame detections as a general undirected graph. Then the association problem turns into a general graph matching between tracklet graph and detection graph. Furthermore, to make the optimization end-to-end differentiable, we relax the original graph matching into continuous quadratic programming and then incorporate the training of it into a deep graph network with the help of the implicit function theorem. Lastly, our method GMTracker, achieves state-of-the-art performance on several standard MOT datasets. Our code will be available at https://github.com/jiaweihe1996/GMTracker .
95 - Lin Song , Yanwei Li , Zeming Li 2019
Learning discriminative global features plays a vital role in semantic segmentation. And most of the existing methods adopt stacks of local convolutions or non-local blocks to capture long-range context. However, due to the absence of spatial structu re preservation, these operators ignore the object details when enlarging receptive fields. In this paper, we propose the learnable tree filter to form a generic tree filtering module that leverages the structural property of minimal spanning tree to model long-range dependencies while preserving the details. Furthermore, we propose a highly efficient linear-time algorithm to reduce resource consumption. Thus, the designed modules can be plugged into existing deep neural networks conveniently. To this end, tree filtering modules are embedded to formulate a unified framework for semantic segmentation. We conduct extensive ablation studies to elaborate on the effectiveness and efficiency of the proposed method. Specifically, it attains better performance with much less overhead compared with the classic PSP block and Non-local operation under the same backbone. Our approach is proved to achieve consistent improvements on several benchmarks without bells-and-whistles. Code and models are available at https://github.com/StevenGrove/TreeFilter-Torch.
The Learnable Tree Filter presents a remarkable approach to model structure-preserving relations for semantic segmentation. Nevertheless, the intrinsic geometric constraint forces it to focus on the regions with close spatial distance, hindering the effective long-range interactions. To relax the geometric constraint, we give the analysis by reformulating it as a Markov Random Field and introduce a learnable unary term. Besides, we propose a learnable spanning tree algorithm to replace the original non-differentiable one, which further improves the flexibility and robustness. With the above improvements, our method can better capture long-range dependencies and preserve structural details with linear complexity, which is extended to several vision tasks for more generic feature transform. Extensive experiments on object detection/instance segmentation demonstrate the consistent improvements over the original version. For semantic segmentation, we achieve leading performance (82.1% mIoU) on the Cityscapes benchmark without bells-and-whistles. Code is available at https://github.com/StevenGrove/LearnableTreeFilterV2.
75 - Yaoyu Hu , Wenshan Wang , Huai Yu 2021
Stereo reconstruction models trained on small images do not generalize well to high-resolution data. Training a model on high-resolution image size faces difficulties of data availability and is often infeasible due to limited computing resources. In this work, we present the Occlusion-aware Recurrent binocular Stereo matching (ORStereo), which deals with these issues by only training on available low disparity range stereo images. ORStereo generalizes to unseen high-resolution images with large disparity ranges by formulating the task as residual updates and refinements of an initial prediction. ORStereo is trained on images with disparity ranges limited to 256 pixels, yet it can operate 4K-resolution input with over 1000 disparities using limited GPU memory. We test the models capability on both synthetic and real-world high-resolution images. Experimental results demonstrate that ORStereo achieves comparable performance on 4K-resolution images compared to state-of-the-art methods trained on large disparity ranges. Compared to other methods that are only trained on low-resolution images, our method is 70% more accurate on 4K-resolution images.
99 - Hang Zhu , Zihao Wang 2020
Feature matching is an important technique to identify a single object in different images. It helps machines to construct recognition of a specific object from multiple perspectives. For years, feature matching has been commonly used in various comp uter vision applications, like traffic surveillance, self-driving, and other systems. With the arise of Computer-Aided Diagnosis(CAD), the need for feature matching techniques also emerges in the medical imaging field. In this paper, we present a deep learning-based method specially for ultrasound images. It will be examined against existing methods that have outstanding results on regular images. As the ultrasound images are different from regular images in many fields like texture, noise type, and dimension, traditional methods will be evaluated and optimized to be applied to ultrasound images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا