ترغب بنشر مسار تعليمي؟ اضغط هنا

Video Object Grounding using Semantic Roles in Language Description

178   0   0.0 ( 0 )
 نشر من قبل Arka Sadhu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the task of Video Object Grounding (VOG), which grounds objects in videos referred to in natural language descriptions. Previous methods apply image grounding based algorithms to address VOG, fail to explore the object relation information and suffer from limited generalization. Here, we investigate the role of object relations in VOG and propose a novel framework VOGNet to encode multi-modal object relations via self-attention with relative position encoding. To evaluate VOGNet, we propose novel contrasting sampling methods to generate more challenging grounding input samples, and construct a new dataset called ActivityNet-SRL (ASRL) based on existing caption and grounding datasets. Experiments on ASRL validate the need of encoding object relations in VOG, and our VOGNet outperforms competitive baselines by a significant margin.

قيم البحث

اقرأ أيضاً

Video Question Answering (VidQA) evaluation metrics have been limited to a single-word answer or selecting a phrase from a fixed set of phrases. These metrics limit the VidQA models application scenario. In this work, we leverage semantic roles deriv ed from video descriptions to mask out certain phrases, to introduce VidQAP which poses VidQA as a fill-in-the-phrase task. To enable evaluation of answer phrases, we compute the relative improvement of the predicted answer compared to an empty string. To reduce the influence of language bias in VidQA datasets, we retrieve a video having a different answer for the same question. To facilitate research, we construct ActivityNet-SRL-QA and Charades-SRL-QA and benchmark them by extending three vision-language models. We further perform extensive analysis and ablative studies to guide future work.
174 - Guoshun Nan , Rui Qiao , Yao Xiao 2021
Video grounding aims to localize a moment from an untrimmed video for a given textual query. Existing approaches focus more on the alignment of visual and language stimuli with various likelihood-based matching or regression strategies, i.e., P(Y|X). Consequently, these models may suffer from spurious correlations between the language and video features due to the selection bias of the dataset. 1) To uncover the causality behind the model and data, we first propose a novel paradigm from the perspective of the causal inference, i.e., interventional video grounding (IVG) that leverages backdoor adjustment to deconfound the selection bias based on structured causal model (SCM) and do-calculus P(Y|do(X)). Then, we present a simple yet effective method to approximate the unobserved confounder as it cannot be directly sampled from the dataset. 2) Meanwhile, we introduce a dual contrastive learning approach (DCL) to better align the text and video by maximizing the mutual information (MI) between query and video clips, and the MI between start/end frames of a target moment and the others within a video to learn more informative visual representations. Experiments on three standard benchmarks show the effectiveness of our approaches. Our code is available on GitHub: https://github.com/nanguoshun/IVG.
We develop a system to disambiguate object instances within the same class based on simple physical descriptions. The system takes as input a natural language phrase and a depth image containing a segmented object and predicts how similar the observe d object is to the object described by the phrase. Our system is designed to learn from only a small amount of human-labeled language data and generalize to viewpoints not represented in the language-annotated depth image training set. By decoupling 3D shape representation from language representation, this method is able to ground language to novel objects using a small amount of language-annotated depth-data and a larger corpus of unlabeled 3D object meshes, even when these objects are partially observed from unusual viewpoints. Our system is able to disambiguate between novel objects, observed via depth images, based on natural language descriptions. Our method also enables view-point transfer; trained on human-annotated data on a small set of depth images captured from frontal viewpoints, our system successfully predicted object attributes from rear views despite having no such depth images in its training set. Finally, we demonstrate our approach on a Baxter robot, enabling it to pick specific objects based on human-provided natural language descriptions.
We address the problem of phrase grounding by lear ing a multi-level common semantic space shared by the textual and visual modalities. We exploit multiple levels of feature maps of a Deep Convolutional Neural Network, as well as contextualized word and sentence embeddings extracted from a character-based language model. Following dedicated non-linear mappings for visual features at each level, word, and sentence embeddings, we obtain multiple instantiations of our common semantic space in which comparisons between any target text and the visual content is performed with cosine similarity. We guide the model by a multi-level multimodal attention mechanism which outputs attended visual features at each level. The best level is chosen to be compared with text content for maximizing the pertinence scores of image-sentence pairs of the ground truth. Experiments conducted on three publicly available datasets show significant performance gains (20%-60% relative) over the state-of-the-art in phrase localization and set a new performance record on those datasets. We provide a detailed ablation study to show the contribution of each element of our approach and release our code on GitHub.
Video grounding aims to localize the temporal segment corresponding to a sentence query from an untrimmed video. Almost all existing video grounding methods fall into two frameworks: 1) Top-down model: It predefines a set of segment candidates and th en conducts segment classification and regression. 2) Bottom-up model: It directly predicts frame-wise probabilities of the referential segment boundaries. However, all these methods are not end-to-end, ie, they always rely on some time-consuming post-processing steps to refine predictions. To this end, we reformulate video grounding as a set prediction task and propose a novel end-to-end multi-modal Transformer model, dubbed as textbf{GTR}. Specifically, GTR has two encoders for video and language encoding, and a cross-modal decoder for grounding prediction. To facilitate the end-to-end training, we use a Cubic Embedding layer to transform the raw videos into a set of visual tokens. To better fuse these two modalities in the decoder, we design a new Multi-head Cross-Modal Attention. The whole GTR is optimized via a Many-to-One matching loss. Furthermore, we conduct comprehensive studies to investigate different model design choices. Extensive results on three benchmarks have validated the superiority of GTR. All three typical GTR variants achieve record-breaking performance on all datasets and metrics, with several times faster inference speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا