ﻻ يوجد ملخص باللغة العربية
Considering the high computation cost produced in conventional computation fluid dynamic simulations, machine learning methods have been introduced to flow dynamic simulations in recent years. However, most of studies focus mainly on existing fluid fields learning, the prediction of spatio-temporal nonlinear fluid flows in varying parameterized space has been neglected. In this work, we propose a hybrid deep adversarial autoencoder (DAA) to integrate generative adversarial network (GAN) and variational autoencoder (VAE) for predicting parameterized nonlinear fluid flows in spatial and temporal space. High-dimensional inputs are compressed into the low-representation representations by nonlinear functions in a convolutional encoder. In this way, the predictive fluid flows reconstructed in a convolutional decoder contain the dynamic flow physics of high nonlinearity and chaotic nature. In addition, the low-representation representations are applied into the adversarial network for model training and parameter optimization, which enables a fast computation process. The capability of the hybrid DAA is demonstrated by varying inputs on a water collapse example. Numerical results show that this hybrid DAA has successfully captured the spatio-temporal flow features with CPU speed-up of three orders of magnitude. Promising results suggests that the hybrid DAA can play a critical role in efficiently and accurately predicting complex flows in future.
The movement of subaqueous sediment in laminar shearing flow is numerically investigated by the coupled lattice Boltzmann and discrete element methods. First, the numerical method is validated by comparing the phase diagram proposed by Ouriemi {it et
We present numerical simulations of laminar and turbulent channel flow of an elastoviscoplastic fluid. The non-Newtonian flow is simulated by solving the full incompressible Navier-Stokes equations coupled with the evolution equation for the elastovi
Reduced Order Modelling (ROM) has been widely used to create lower order, computationally inexpensive representations of higher-order dynamical systems. Using these representations, ROMs can efficiently model flow fields while using significantly les
Recently, detailed experiments on visco-elastic channel flow have provided convincing evidence for a nonlinear instability scenario which we had argued for based on calculations for visco-elastic Couette flow. Motivated by these experiments we extend
Motivated by the complex rheological behaviors observed in small/micro scale blood vessels, such as the Fahraeus effect, plasma-skimming, shear-thinning, etc., we develop a non-linear suspension model for blood. The viscosity is assumed to depend on