ﻻ يوجد ملخص باللغة العربية
In this work, we revisited the ZGB model in order to study the behavior of its phase diagram when two well-known random networks play the role of the catalytic surfaces: the Random Geometric Graph and the Erd{o}s-R{e}nyi network. The connectivity and, therefore, the average number of neighbors of the nodes of these networks can vary according to their control parameters, the neighborhood radius $alpha$ and the linking probability $p$, respectively. In addition, the catalytic reactions of the ZGB model are governed by the parameter $y$, the adsorption rate of carbon monoxide molecules on the catalytic surface. So, to study the phase diagrams of the model on both random networks, we carried out extensive steady-state Monte Carlo simulations in the space parameters ($y,alpha$) and ($y,p$) and showed that the continuous phase transition is greatly affected by the topological features of the networks while the discontinuous one remains present in the diagram throughout the interval of study.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top
The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM).
We explore a class of random tensor network models with ``stabilizer local tensors which we name Random Stabilizer Tensor Networks (RSTNs). For RSTNs defined on a two-dimensional square lattice, we perform extensive numerical studies of entanglement
We use a Monte Carlo bond-switching method to study systematically the thermodynamic properties of a continuous random network model, the canonical model for such amorphous systems as a-Si and a-SiO$_2$. Simulations show first-order melting into an a
We study the effect of coadsorption of CO and O on a Ziff-Gulari-Barshad (ZGB) model with CO desorption (ZGB-d) for the reaction CO + O --> CO_2 on a catalytic surface. Coadsorption of CO on a surface site already occupied by an O is introduced by an