ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB Prompt Emission Spectra: The Synchrotron Revenge

79   0   0.0 ( 0 )
 نشر من قبل Maria Edvige Ravasio
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After more than 40 years from their discovery, the long-lasting tension between predictions and observations of GRBs prompt emission spectra starts to be solved. We found that the observed spectra can be produced by the synchrotron process, if the emitting particles do not completely cool. Evidence for incomplete cooling was recently found in Swift GRBs spectra with prompt observations down to 0.5 keV (Oganesyan et al. 2017, 2018), characterized by an additional low-energy break. In order to search for this break at higher energies, we analysed the 10 long and 10 short brightest GRBs detected by the Fermi satellite in over 10 years of activity. We found that in 8/10 long GRBs there is compelling evidence of a low energy break (below the peak energy) and the photon indices below and above that break are remarkably consistent with the values predicted by the synchrotron spectrum (-2/3 and -3/2, respectively). None of the ten short GRBs analysed shows a break, but the low energy spectral slope is consistent with -2/3. Within the framework of the GRB standard model, these results imply a very low magnetic field in the emission region, at odds with expectations. I also present the spectral evolution of GRB 190114C, the first GRB detected with high significance by the MAGIC Telescopes, which shows the compresence (in the keV-MeV energy range) of the prompt and of the afterglow emission, the latter rising and dominating the high energy part of the spectral energy range.

قيم البحث

اقرأ أيضاً

69 - Siyao Xu 2019
Particle acceleration is a fundamental process in many high-energy astrophysical environments and determines the spectral features of their synchrotron emission. We have studied the adiabatic stochastic acceleration (ASA) of electrons arising from th e basic dynamics of magnetohydrodynamic (MHD) turbulence and found that the ASA acts to efficiently harden the injected electron energy spectrum. The dominance of the ASA at low energies and the dominance of synchrotron cooling at high energies result in a broken power-law shape of both electron energy spectrum and photon synchrotron spectrum. Furthermore, we have applied the ASA to studying the synchrotron spectra of the prompt emission of gamma-ray bursts (GRBs) and pulsar wind nebulae (PWNe). The good agreement between our theories and observations confirms that the stochastic particle acceleration is indispensable in explaining their synchrotron emission.
144 - F. Daigne 2010
(abridged)Prompt GRB emission is often interpreted as synchrotron radiation from high-energy electrons accelerated in internal shocks. Fast synchrotron cooling predicts that the photon index below the spectral peak is alpha=-3/2. This differs signifi cantly from the observed median value alpha approx -1. We quantify the influence of inverse Compton and adiabatic cooling on alpha to understand whether these processes can reconcile the observations with a synchrotron origin. We use a time-dependent code that follows both the shock dynamics and electron energy losses. We investigate the dependence of alpha on the parameters of the model. Slopes between -3/2 and -1 are reached when electrons suffer IC losses in the Klein-Nishina regime. This does not necessarily imply a strong IC component in the Fermi/LAT range because scatterings are only moderately efficient. Steep slopes require that a large fraction (10-30%) of the dissipated energy is given to a small fraction (<~1%) of the electrons and that the magnetic energy density fraction remains low (<~ 0.1%). Values of alpha up to -2/3 can be obtained with relatively high radiative efficiencies (>50%) when adiabatic cooling is comparable with radiative cooling (marginally fast cooling). This requires collisions at small radii and/or with low magnetic fields. Amending the standard fast cooling scenario to account for IC cooling naturally leads to alpha up to -1. Marginally fast cooling may also account for alpha up to -2/3, although the conditions required are more difficult to reach. About 20% of GRBs show spectra with slopes alpha>-2/3. Other effects, not investigated here, such as a thermal component in the electron distribution or pair production by HE photons may further affect alpha. Still, the majority of observed GRB prompt spectra can be reconciled with a synchrotron origin, constraining the microphysics of mildly relativistic internal shocks.
125 - S. Guiriec (1 , 2 , 3 2017
GRB 120323A is a very intense short Gamma Ray Burst (GRB) detected simultaneously during its prompt gamma-ray emission phase with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope and the Konus experiment on board the Win d satellite. GBM and Konus operate in the keV--MeV regime, however, the GBM range is broader both toward the low and the high parts of the gamma-ray spectrum. Analysis of such bright events provide a unique opportunity to check the consistency of the data analysis as well as cross-calibrate the two instruments. We performed time-integrated and coarse time-resolved spectral analysis of GRB 120323A prompt emission. We conclude that the analyses of GBM and Konus data are only consistent when using a double-hump spectral shape for both data sets; in contrast, the single-hump of the empirical Band function, traditionally used to fit GRB prompt emission spectra, leads to significant discrepancies between GBM and Konus analysis results. Our two-hump model is a combination of a thermal-like and a non-thermal component. We interpret the first component as a natural manifestation of the jet photospheric emission.
As a backend to the first station of the Long Wavelength Array (LWA1) the Prototype All Sky Imager (PASI) has been imaging the sky $>$ -26$^{circ}$ declination during 34 Gamma Ray Bursts (GRBs) between January 2012 and May 2013. Using this data we we re able to put the most stringent limits to date on prompt low frequency emission from GRBs. While our limits depend on the zenith angle of the observed GRB, we estimate a 1$sigma$ RMS sensitivity of 68, 65 and 70 Jy for 5 second integrations at 37.9, 52.0, and 74.0 MHz at zenith. These limits are relevant for pulses $geq$ 5 s and are limited by dispersion smearing. For pulses of length 5 s we are limited to dispersion measures ($DM$s) $leq$ 220, 570, and 1,600 pc cm$^{-3}$ for the frequencies above. For pulses lasting longer than 5s, the $DM$ limits increase linearly with the duration of the pulse. We also report two interesting transients, which are, as of yet, of unknown origin, and are not coincident with any known GRBs. For general transients, we give rate density limits of $leq$ $7.5times10^{-3}$, $2.9times10^{-2}$, and $1.4times10^{-2}$ yr$^{-1}$ deg$^{-2}$ with pulse energy densities $>1.3times 10^{-22}$, $1.1times 10^{-22}$, and $1.4times 10^{-22}$ J m$^{-2}$ Hz$^{-1}$ and pulse widths of 5 s at the frequencies given above.
We discuss the new surprising observational results that indicate quite convincingly that the prompt emission of Gamma-Ray Bursts (GRBs) is due to synchrotron radiation produced by a particle distribution that has a low energy cut-off. The evidence o f this is provided by the low energy part of the spectrum of the prompt emission, that shows the characteristic F(nu) propto nu^(1/3) shape followed by F(nu) propto nu^(-1/2) up to the peak frequency. This implies that although the emitting particles are in fast cooling, they do not cool completely. This poses a severe challenge to the basic ideas about how and where the emission is produced, because the incomplete cooling requires a small value of the magnetic field, to limit synchrotron cooling, and a large emitting region, to limit the self-Compton cooling, even considering Klein-Nishina scattering effects. Some new and fundamental ingredient is required for understanding the GRBs prompt emission. We propose proton-synchrotron as a promising mechanism to solve the incomplete cooling puzzle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا