ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental identification of the $T = 1$, $J^{pi} = 6^+$ state of $^{54}$Co and isospin symmetry in $A = 54$ studied via one-nucleon knockout reactions

83   0   0.0 ( 0 )
 نشر من قبل Mark Spieker
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

New experimental data obtained from $gamma$-ray tagged one-neutron and one-proton knockout from $^{55}$Co is presented. A candidate for the sought-after $T=1, T_z = 0, J^{pi} = 6^+$ state in $^{54}$Co is proposed based on a comparison to the new data on $^{54}$Fe, the corresponding observables predicted by large-scale-shell-model (LSSM) calculations in the full $fp$-model space employing charge-dependent contributions, and isospin-symmetry arguments. Furthermore, possible isospin-symmetry breaking in the $A=54$, $T=1$ triplet is studied by calculating the experimental $c$ coefficients of the isobaric mass multiplet equation (IMME) up to the maximum possible spin $J=6$ expected for the $(1f_{7/2})^{-2}$ two-hole configuration relative to the doubly-magic nucleus $^{56}$Ni. The experimental quantities are compared to the theoretically predicted $c$ coefficients from LSSM calculations using two-body matrix elements obtained from a realistic chiral effective field theory potential at next-to-next-to-next-to-leading order (N$^3$LO).



قيم البحث

اقرأ أيضاً

We present a high-resolution in-beam $gamma$-ray spectroscopy study of excited states in the mirror nuclei $^{55}$Co and $^{55}$Ni following one-nucleon knockout from a projectile beam of $^{56}$Ni. The newly determined partial cross sections and the $gamma$-decay properties of excited states provide a test of state-of-the-art nuclear structure models and probe mirror symmetry in unique ways. A mirror asymmetry for the partial cross sections leading to the two lowest $3/2^-$ states in the $A = 55$ mirror pair was identified as well as a significant difference in the $E1$ decays from the $1/2^+_1$ state to the same two $3/2^-$ states. The mirror asymmetry in the partial cross sections cannot be reconciled with the present shell-model picture or small mixing introduced in a two-state model. The observed mirror asymmetry in the $E1$ decay pattern, however, points at stronger mixing between the two lowest $3/2^-$ states in $^{55}$Co than in its mirror $^{55}$Ni.
The nuclear root-mean-square charge radius of $^{54}$Ni was determined with collinear laser spectroscopy to be $R(^{54}$Ni) = 3.737,(3)~fm. In conjunction with the known radius of the mirror nucleus $^{54}$Fe, the difference of the charge radii was e xtracted as $Delta R_{rm ch}$ = 0.049,(4)~fm. Based on the correlation between $Delta R_{rm ch}$ and the slope of the symmetry energy at nuclear saturation density ($L$), we deduced $20 le L le 70$,MeV. The present result is consistent with the $L$ from the binary neutron star merger GW170817, favoring a soft neutron matter EOS, and barely consistent with the PREX-2 result within 1$sigma$ error bands. Our result indicates the neutron-skin thickness of $^{48}$Ca as 0.15,-,0.19,fm.
The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partner s are interpreted in terms of isospin nonconserving effects. A comparison between large scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.
A precision measurement of the gamma yields following the beta decay of 32Cl has determined its isobaric analogue branch to be (22.47^{+0.21}_{-0.19})%. Since it is an almost pure Fermi decay, we can also determine the amount of isospin-symmetry brea king in this superallowed transition. We find a very large value, delta_C=5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark for isospin-symmetry-breaking calculations and lends support for similarly-calculated, yet smaller, corrections that are currently applied to 0+ -> 0+ transitions for tests of the Standard Model.
We report measurements of the $pi^- p to pi^o n$ differential cross sections at six momenta (104-143 MeV/c) and four angles (0-40 deg) by detection of $gamma$-ray pairs from $pi^o to gamma gamma$ decays using the TRIUMF RMC spectrometer. This region exhibits a vanishing zero-degree cross section from destructive interference between s-- and p--waves, thus yielding special sensitivity to pion-nucleon dynamics and isospin symmetry breaking. Our data and previous data do not agree, with important implications for earlier claims of large isospin violating effects in low energy pion-nucleon interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا