ﻻ يوجد ملخص باللغة العربية
The atmospheres of highly irradiated exoplanets are observed to undergo hydrodynamic escape. However, due to strong pressures, stellar winds can confine planetary atmospheres, reducing their escape. Here, we investigate under which conditions atmospheric escape of close-in giants could be confined by the large pressure of their host stars winds. For that, we simulate escape in planets at a range of orbital distances ([0.04, 0.14] au), planetary gravities ([36%, 87%] of Jupiters gravity), and ages ([1, 6.9] Gyr). For each of these simulations, we calculate the ram pressure of these escaping atmospheres and compare them to the expected stellar wind external pressure to determine whether a given atmosphere is confined or not. We show that, although younger close-in giants should experience higher levels of atmospheric escape, due to higher stellar irradiation, stellar winds are also stronger at young ages, potentially reducing escape of young exoplanets. Regardless of the age, we also find that there is always a region in our parameter space where atmospheric escape is confined, preferably occurring at higher planetary gravities and orbital distances. We investigate confinement of some known exoplanets and find that the atmosphere of several of them, including pi Men c, should be confined by the winds of their host stars, thus potentially preventing escape in highly irradiated planets. Thus, the lack of hydrogen escape recently reported for pi Men c could be caused by the stellar wind.
We use 3D hydrodynamics simulations followed by synthetic line profile calculations to examine the effect increasing the strength of the stellar wind has on observed Ly-$alpha$ transits of a Hot Jupiter (HJ) and a Warm Neptune (WN). We find that incr
Atmospheric escape from close-in exoplanets is thought to be crucial in shaping observed planetary populations. Recently, significant progress has been made in observing this process in action through excess absorption in transit spectra and narrowba
TRAPPIST-1 is a fantastic nearby (~39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable s
In this work we study the effect of disequilibrium processes on mixing ratio profiles of neutral species and on the simulated spectra of a hot Jupiter exoplanet that orbits stars of different spectral types. We also address the impact of stellar acti
Interactions between the winds of stars and the magnetospheres and atmospheres of planets involve many processes, including the acceleration of particles, heating of upper atmospheres, and a diverse range of atmospheric loss processes. Winds remove a