ﻻ يوجد ملخص باللغة العربية
This paper presents an algorithm that makes novel use of distance measurements alongside a constrained Kalman filter to accurately estimate pelvis, thigh, and shank kinematics for both legs during walking and other body movements using only three wearable inertial measurement units (IMUs). The distance measurement formulation also assumes hinge knee joint and constant body segment length, helping produce estimates that are near or in the constraint space for better estimator stability. Simulated experiments shown that inter-IMU distance measurement is indeed a promising new source of information to improve the pose estimation of inertial motion capture systems under a reduced sensor count configuration. Furthermore, experiments show that performance improved dramatically for dynamic movements even at high noise levels (e.g., $sigma_{dist} = 0.2$ m), and that acceptable performance for normal walking was achieved at $sigma_{dist} = 0.1$ m. Nevertheless, further validation is recommended using actual distance measurement sensors.
Goal: This paper presents an algorithm for accurately estimating pelvis, thigh, and shank kinematics during walking using only three wearable inertial sensors. Methods: The algorithm makes novel use of a constrained Kalman filter (CKF). The algorithm
This paper presents an algorithm that makes novel use of a Lie group representation of position and orientation alongside a constrained extended Kalman filter (CEKF) to accurately estimate pelvis, thigh, and shank kinematics during walking using only
Goal: This paper presents an algorithm for estimating pelvis, thigh, shank, and foot kinematics during walking using only two or three wearable inertial sensors. Methods: The algorithm makes novel use of a Lie-group-based extended Kalman filter. The
The human body is punctuated with wide array of sensory systems that provide a high evolutionary advantage by facilitating formation of a detailed picture of the immediate surroundings. The sensors range across a wide spectrum, acquiring input from n
Kalman filtering has been traditionally applied in three application areas of estimation, state estimation, parameter estimation (a.k.a. model updating), and dual estimation. However, Kalman filter is often not sufficient when experimenting with high