ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitation and charge transfer in low-energy hydrogen atom collisions with neutral manganese and titanium

97   0   0.0 ( 0 )
 نشر من قبل Jon Grumer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Data for inelastic processes due to hydrogen atom collisions with manganese and titanium are needed for accurate modeling of the corresponding spectra in late-type stars. In this work excitation and charge transfer in low-energy Mn+H and Ti+H collisions have been studied theoretically using a method based on an asymptotic two-electron linear combination of an atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model to treat the dynamics. Extensive calculations of charge transfer (mutual neutralization, ion-pair production), excitation and de-excitation processes in the two collisional systems are carried out for all transitions between covalent states dissociating to energies below the first ionic limit and the dominating ionic states. Rate coefficients are determined for temperatures in the range 1000 - 20 000 K in steps of 1000 K. Like for earlier studies of other atomic species, charge transfer processes are found to lead to much larger rate coefficients than excitation processes.



قيم البحث

اقرأ أيضاً

Low-energy inelastic collisions with neutral hydrogen atoms are important processes in stellar atmospheres, and a persistent source of uncertainty in non-LTE modelling of stellar spectra. We have calculated and studied excitation and charge transfer of C i and of N i due to such collisions. We used a previously presented method that is based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions for the adiabatic potential energies, combined with the multichannel Landau-Zener model for the collision dynamics. We find that charge transfer processes typically lead to much larger rate coefficients than excitation processes do, consistent with studies of other atomic species. Two-electron processes were considered and lead to non-zero rate coefficients that can potentially impact statistical equilibrium calculations. However, they were included in the model in an approximate way, via an estimate for the two-electron coupling that was presented earlier in the literature: the validity of these data should be checked in a future work.
53 - Paul S. Barklem 2016
A theoretical method for the estimation of cross sections and rates for excitation and charge transfer processes in low-energy hydrogen atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in th e neutral atom-hydrogen atom system, is presented. The calculation of potentials and non-adiabatic radial couplings using the method is demonstrated. The potentials are used together with the multi-channel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wavefunctions, which can be determined from known atomic parameters. The method is applied to Li+H, Na+H, and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20000 K.
Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation me chanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster transparency characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.
144 - O. Knospe 1997
Charge transfer in collisions of Na_n^+ cluster ions with Cs atoms is investigated theoretically in the microscopic framework of non-adiabatic quantum molecular dynamics. The competing reaction channels and related processes affecting the charge tran sfer (electronic excitations, fragmentation, temperature) are described. Absolute charge transfer cross sections for Na_n^+(2.7 keV) + Cs --> Na_n + Cs^+ have been calculated in the size range 4 <= n <= 11 reproducing the size dependence of the experimental cross sections. The energy dependence of the cross section is predicted for n=4,7,9. An exotic charge transfer channel producing Cs^- is found to have a finite probability.
Interpretation of solar polarization spectra accounting for partial or complete frequency redistribution requires data on various collisional processes. Data for depolarization and polarization transfer are needed but often missing, while data for co llisional broadening are usually more readily available. Recent work by Sahal-Brechot and Bommier concluded that despite underlying similarities in the physics of collisional broadening and depolarization processes, relationships between them are not possible to derive purely analytically. We aim to derive accurate numerical relationships between the collisional broadening rates and the collisional depolarization and polarization transfer rates due to hydrogen atom collisions. Such relationships would enable accurate and efficient estimation of collisional data for solar applications. Using earlier results for broadening and depolarization processes based on general (i.e. not specific to a given atom), semi-classical calculations employing interaction potentials from perturbation theory, genetic programming (GP) has been used to fit the available data and generate analytical functions describing the relationships between them. The predicted relationships from the GP-based model are compared with the original data to estimate the accuracy of the method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا