ﻻ يوجد ملخص باللغة العربية
Colloidal cuboids have the potential to self-assemble into biaxial liquid crystal phases, which exhibit two independent optical axes. Over the last few decades, several theoretical works predicted the existence of a wide region of the phase diagram where the biaxial nematic phase would be stable, but imposed rather strong constraints on the particle rotational degrees of freedom. In this work, we employ molecular simulation to investigate the impact of size dispersity on the phase behaviour of freely-rotating hard cuboids, here modelled as self-dual-shaped nanoboards. This peculiar anisotropy, exactly in between oblate and prolate geometry, has been proposed as the most appropriate to promote phase biaxiality. We observe that size dispersity radically changes the phase behaviour of monodisperse systems and leads to the formation of the elusive biaxial nematic phase, being found in an large region of the packing fraction vs polydispersity phase diagram. Although our results confirm the tendencies reported in past experimental observations on colloidal dispersions of slightly prolate goethite particles, they cannot reproduce the direct isotropic-to-biaxial nematic phase transition observed in these experiments.
We report small-angle x-ray scattering (SAXS) experiments on aqueous dispersions of colloidal silica with a broad monomodal size distribution (polydispersity 18%, size 8 nm). Over a range of volume fractions the silica particles segregate to build fi
Field-induced reorientation of colloidal particles is especially relevant to manipulate the optical properties of a nanomaterial for target applications. We have recently shown that surprisingly feeble external stimuli are able to transform uniaxial
Investigations of the phase diagram of biaxial liquid crystal systems through analyses of general Hamiltonian models within the simplifications of mean-field theory (MFT), as well as by computer simulations based on microscopic models, are directed t
Phase sequences of the biaxial nematic liquid crystal in the interior of the essential triangle are studied with Wang Landau sampling. The evidence points to the existence of an intermediate unixial phase with low biaxiality in the isotropic to biaxial nematic phase sequence.
The biaxial smectic-A* (Sm-A_B*) phase, appearing in the phase sequence Sm-A*--Sm-A*_B--Sm-C*, is analyzed using Landau theory. It is found to possess a helical superstructure with a pitch that is significantly shorter than the pitch of the Sm-C* hel