ﻻ يوجد ملخص باللغة العربية
Low-rank Multi-view Subspace Learning (LMvSL) has shown great potential in cross-view classification in recent years. Despite their empirical success, existing LMvSL based methods are incapable of well handling view discrepancy and discriminancy simultaneously, which thus leads to the performance degradation when there is a large discrepancy among multi-view data. To circumvent this drawback, motivated by the block-diagonal representation learning, we propose Structured Low-rank Matrix Recovery (SLMR), a unique method of effectively removing view discrepancy and improving discriminancy through the recovery of structured low-rank matrix. Furthermore, recent low-rank modeling provides a satisfactory solution to address data contaminated by predefined assumptions of noise distribution, such as Gaussian or Laplacian distribution. However, these models are not practical since complicated noise in practice may violate those assumptions and the distribution is generally unknown in advance. To alleviate such limitation, modal regression is elegantly incorporated into the framework of SLMR (term it MR-SLMR). Different from previous LMvSL based methods, our MR-SLMR can handle any zero-mode noise variable that contains a wide range of noise, such as Gaussian noise, random noise and outliers. The alternating direction method of multipliers (ADMM) framework and half-quadratic theory are used to efficiently optimize MR-SLMR. Experimental results on four public databases demonstrate the superiority of MR-SLMR and its robustness to complicated noise.
Fourier domain structured low-rank matrix priors are emerging as powerful alternatives to traditional image recovery methods such as total variation and wavelet regularization. These priors specify that a convolutional structured matrix, i.e., Toepli
Low rank matrix recovery is the focus of many applications, but it is a NP-hard problem. A popular way to deal with this problem is to solve its convex relaxation, the nuclear norm regularized minimization problem (NRM), which includes LASSO as a spe
We address the problem of efficient sparse fixed-rank (S-FR) matrix decomposition, i.e., splitting a corrupted matrix $M$ into an uncorrupted matrix $L$ of rank $r$ and a sparse matrix of outliers $S$. Fixed-rank constraints are usually imposed by th
We study the problem of reconstructing an unknown matrix M of rank r and dimension d using O(rd poly log d) Pauli measurements. This has applications in quantum state tomography, and is a non-commutative analogue of a well-known problem in compressed
This paper develops a new class of nonconvex regularizers for low-rank matrix recovery. Many regularizers are motivated as convex relaxations of the matrix rank function. Our new factor group-sparse regularizers are motivated as a relaxation of the n