ﻻ يوجد ملخص باللغة العربية
We consider static and cylindrically symmetric interior string type solutions in the scalar-tensor representation of the hybrid metric-Palatini modified theory of gravity. As a first step in our study, we obtain the gravitational field equations and further simplify the analysis by imposing Lorentz invariance along the $t$ and $z$ axes, which reduces the number of unknown metric tensor components to a single function $W^2(r)$. In this case, the general solution of the field equations can be obtained, for an arbitrary form of the scalar field potential, in an exact closed parametric form, with the scalar field $phi$ taken as a parameter. We consider in detail several exact solutions of the field equations, corresponding to a null and constant potential, and to a power-law potential of the form $V(phi)=V_0phi ^{3/4}$, in which the behaviors of the scalar field, of the metric tensor components and of the string tension can be described in a simple mathematical form. We also investigate the string models with exponential and Higgs type scalar field potentials by using numerical methods. In this way we obtain a large class of novel stable string-like solutions in the context of hybrid metric-Palatini gravity, in which the basic parameters, such as the scalar field, metric tensor components, and string tension, depend essentially on the initial values of the scalar field, and of its derivative, on the $r=0$ circular axis.
The rapid advancement of gravitational wave astronomy in recent years has paved the way for the burgeoning development of black hole spectroscopy, which enhances the possibility of testing black holes by their quasinormal modes (QNMs). In this paper,
We consider the possible existence of gravitationally bound stringlike objects in the framework of the generalized hybrid metric-Palatini gravity theory, in which the gravitational action is represented by an arbitrary function of the Ricci and of th
We investigate the efficiency of screening mechanisms in the hybrid metric-Palatini gravity. The value of the field is computed around spherical bodies embedded in a background of constant density. We find a thin shell condition for the field dependi
[Abridged] If gravitation is to be described by a hybrid metric-Palatini $f(mathcal{R})$ gravity theory there are a number of issues that ought to be examined in its context, including the question as to whether its equations allow homogeneous Godel-
We study new FRW type cosmological models of modified gravity treated on the background of Palatini approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally coupled to the curvature. The models emp