ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Word Translations in the Transformer and Trading Decoder for Encoder Layers

90   0   0.0 ( 0 )
 نشر من قبل Hongfei Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to its effectiveness and performance, the Transformer translation model has attracted wide attention, most recently in terms of probing-based approaches. Previous work focuses on using or probing source linguistic features in the encoder. To date, the way word translation evolves in Transformer layers has not yet been investigated. Naively, one might assume that encoder layers capture source information while decoder layers translate. In this work, we show that this is not quite the case: translation already happens progressively in encoder layers and even in the input embeddings. More surprisingly, we find that some of the lower decoder layers do not actually do that much decoding. We show all of this in terms of a probing approach where we project representations of the layer analyzed to the final trained and frozen classifier level of the Transformer decoder to measure word translation accuracy. Our findings motivate and explain a Transformer configuration change: if translation already happens in the encoder layers, perhaps we can increase the number of encoder layers, while decreasing the number of decoder layers, boosting decoding speed, without loss in translation quality? Our experiments show that this is indeed the case: we can increase speed by up to a factor 2.3 with small gains in translation quality, while an 18-4 deep encoder configuration boosts translation quality by +1.42 BLEU (En-De) at a speed-up of 1.4.

قيم البحث

اقرأ أيضاً

260 - Yanyang Li , Ye Lin , Tong Xiao 2021
The large attention-based encoder-decoder network (Transformer) has become prevailing recently due to its effectiveness. But the high computation complexity of its decoder raises the inefficiency issue. By examining the mathematic formulation of the decoder, we show that under some mild conditions, the architecture could be simplified by compressing its sub-layers, the basic building block of Transformer, and achieves a higher parallelism. We thereby propose Compressed Attention Network, whose decoder layer consists of only one sub-layer instead of three. Extensive experiments on 14 WMT machine translation tasks show that our model is 1.42x faster with performance on par with a strong baseline. This strong baseline is already 2x faster than the widely used standard baseline without loss in performance.
Multi-criteria Chinese word segmentation (MCCWS) aims to exploit the relations among the multiple heterogeneous segmentation criteria and further improve the performance of each single criterion. Previous work usually regards MCCWS as different tasks , which are learned together under the multi-task learning framework. In this paper, we propose a concise but effective unified model for MCCWS, which is fully-shared for all the criteria. By leveraging the powerful ability of the Transformer encoder, the proposed unified model can segment Chinese text according to a unique criterion-token indicating the output criterion. Besides, the proposed unified model can segment both simplified and traditional Chinese and has an excellent transfer capability. Experiments on eight datasets with different criteria show that our model outperforms our single-criterion baseline model and other multi-criteria models. Source codes of this paper are available on Github https://github.com/acphile/MCCWS.
Code-switching (CS) occurs when a speaker alternates words of two or more languages within a single sentence or across sentences. Automatic speech recognition (ASR) of CS speech has to deal with two or more languages at the same time. In this study, we propose a Transformer-based architecture with two symmetric language-specific encoders to capture the individual language attributes, that improve the acoustic representation of each language. These representations are combined using a language-specific multi-head attention mechanism in the decoder module. Each encoder and its corresponding attention module in the decoder are pre-trained using a large monolingual corpus aiming to alleviate the impact of limited CS training data. We call such a network a multi-encoder-decoder (MED) architecture. Experiments on the SEAME corpus show that the proposed MED architecture achieves 10.2% and 10.8% relative error rate reduction on the CS evaluation sets with Mandarin and English as the matrix language respectively.
284 - Sina Ahmadi 2018
Automatic spelling and grammatical correction systems are one of the most widely used tools within natural language applications. In this thesis, we assume the task of error correction as a type of monolingual machine translation where the source sen tence is potentially erroneous and the target sentence should be the corrected form of the input. Our main focus in this project is building neural network models for the task of error correction. In particular, we investigate sequence-to-sequence and attention-based models which have recently shown a higher performance than the state-of-the-art of many language processing problems. We demonstrate that neural machine translation models can be successfully applied to the task of error correction. While the experiments of this research are performed on an Arabic corpus, our methods in this thesis can be easily applied to any language.
197 - Tapas Nayak , Hwee Tou Ng 2019
A relation tuple consists of two entities and the relation between them, and often such tuples are found in unstructured text. There may be multiple relation tuples present in a text and they may share one or both entities among them. Extracting such relation tuples from a sentence is a difficult task and sharing of entities or overlapping entities among the tuples makes it more challenging. Most prior work adopted a pipeline approach where entities were identified first followed by finding the relations among them, thus missing the interaction among the relation tuples in a sentence. In this paper, we propose two approaches to use encoder-decoder architecture for jointly extracting entities and relations. In the first approach, we propose a representation scheme for relation tuples which enables the decoder to generate one word at a time like machine translation models and still finds all the tuples present in a sentence with full entity names of different length and with overlapping entities. Next, we propose a pointer network-based decoding approach where an entire tuple is generated at every time step. Experiments on the publicly available New York Times corpus show that our proposed approaches outperform previous work and achieve significantly higher F1 scores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا