ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Sweep for Multi-Target Detection of Geostationary Space Objects

55   0   0.0 ( 0 )
 نشر من قبل Daqi Liu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Conducting surveillance of the Earths orbit is a key task towards achieving space situational awareness (SSA). Our work focuses on the optical detection of man-made objects (e.g., satellites, space debris) in Geostationary orbit (GEO), which is home to major space assets such as telecommunications and navigational satellites. GEO object detection is challenging due to the distance of the targets, which appear as small dim points among a clutter of bright stars. In this paper, we propose a novel multi-target detection technique based on topological sweep, to find GEO objects from a short sequence of optical images. Our topological sweep technique exploits the geometric duality that underpins the approximately linear trajectory of target objects across the input sequence, to extract the targets from significant clutter and noise. Unlike standard multi-target methods, our algorithm deterministically solves a combinatorial problem to ensure high-recall rates without requiring accurate initializations. The usage of geometric duality also yields an algorithm that is computationally efficient and suitable for online processing.



قيم البحث

اقرأ أيضاً

Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations i n water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification.
Glioma constitutes 80% of malignant primary brain tumors and is usually classified as HGG and LGG. The LGG tumors are less aggressive, with slower growth rate as compared to HGG, and are responsive to therapy. Tumor biopsy being challenging for brain tumor patients, noninvasive imaging techniques like Magnetic Resonance Imaging (MRI) have been extensively employed in diagnosing brain tumors. Therefore automated systems for the detection and prediction of the grade of tumors based on MRI data becomes necessary for assisting doctors in the framework of augmented intelligence. In this paper, we thoroughly investigate the power of Deep ConvNets for classification of brain tumors using multi-sequence MR images. We propose novel ConvNet models, which are trained from scratch, on MRI patches, slices, and multi-planar volumetric slices. The suitability of transfer learning for the task is next studied by applying two existing ConvNets models (VGGNet and ResNet) trained on ImageNet dataset, through fine-tuning of the last few layers. LOPO testing, and testing on the holdout dataset are used to evaluate the performance of the ConvNets. Results demonstrate that the proposed ConvNets achieve better accuracy in all cases where the model is trained on the multi-planar volumetric dataset. Unlike conventional models, it obtains a testing accuracy of 95% for the low/high grade glioma classification problem. A score of 97% is generated for classification of LGG with/without 1p/19q codeletion, without any additional effort towards extraction and selection of features. We study the properties of self-learned kernels/ filters in different layers, through visualization of the intermediate layer outputs. We also compare the results with that of state-of-the-art methods, demonstrating a maximum improvement of 7% on the grading performance of ConvNets and 9% on the prediction of 1p/19q codeletion status.
277 - Jiahao Lin , Gim Hee Lee 2021
Existing approaches for multi-view multi-person 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views and solve for the 3D pose estimation for each person. Establishing cross-view co rrespondences is challenging in multi-person scenes, and incorrect correspondences will lead to sub-optimal performance for the multi-stage pipeline. In this work, we present our multi-view 3D pose estimation approach based on plane sweep stereo to jointly address the cross-view fusion and 3D pose reconstruction in a single shot. Specifically, we propose to perform depth regression for each joint of each 2D pose in a target camera view. Cross-view consistency constraints are implicitly enforced by multiple reference camera views via the plane sweep algorithm to facilitate accurate depth regression. We adopt a coarse-to-fine scheme to first regress the person-level depth followed by a per-person joint-level relative depth estimation. 3D poses are obtained from a simple back-projection given the estimated depths. We evaluate our approach on benchmark datasets where it outperforms previous state-of-the-arts while being remarkably efficient. Our code is available at https://github.com/jiahaoLjh/PlaneSweepPose.
Recent advances in unsupervised domain adaptation have significantly improved the recognition accuracy of CNNs by alleviating the domain shift between (labeled) source and (unlabeled) target data distributions. While the problem of single-target doma in adaptation (STDA) for object detection has recently received much attention, multi-target domain adaptation (MTDA) remains largely unexplored, despite its practical relevance in several real-world applications, such as multi-camera video surveillance. Compared to the STDA problem that may involve large domain shifts between complex source and target distributions, MTDA faces additional challenges, most notably the computational requirements and catastrophic forgetting of previously-learned targets, which can depend on the order of target adaptations. STDA for detection can be applied to MTDA by adapting one model per target, or one common model with a mixture of data from target domains. However, these approaches are either costly or inaccurate. The only state-of-art MTDA method specialized for detection learns targets incrementally, one target at a time, and mitigates the loss of knowledge by using a duplicated detection model for knowledge distillation, which is computationally expensive and does not scale well to many domains. In this paper, we introduce an efficient approach for incremental learning that generalizes well to multiple target domains. Our MTDA approach is more suitable for real-world applications since it allows updating the detection model incrementally, without storing data from previous-learned target domains, nor retraining when a new target domain becomes available. Our proposed method, MTDA-DTM, achieved the highest level of detection accuracy compared against state-of-the-art approaches on several MTDA detection benchmarks and Wildtrack, a benchmark for multi-camera pedestrian detection.
We consider the multi-target detection problem of estimating a two-dimensional target image from a large noisy measurement image that contains many randomly rotated and translated copies of the target image. Motivated by single-particle cryo-electron microscopy, we focus on the low signal-to-noise regime, where it is difficult to estimate the locations and orientations of the target images in the measurement. Our approach uses autocorrelation analysis to estimate rotationally and translationally invariant features of the target image. We demonstrate that, regardless of the level of noise, our technique can be used to recover the target image when the measurement is sufficiently large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا