ﻻ يوجد ملخص باللغة العربية
Domain adaptation has been a fundamental technology for transferring knowledge from a source domain to a target domain. The key issue of domain adaptation is how to reduce the distribution discrepancy between two domains in a proper way such that they can be treated indifferently for learning. In this paper, we propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.Specifically, we regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching. Besides, to exploit the manifold structure information of target data more thoroughly, we further introduce a local manifold self-learning strategy into our proposal to adaptively capture the inherent local connectivity of target samples. An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee. In addition to unsupervised domain adaptation, we further extend our method to the semi-supervised scenario including both homogeneous and heterogeneous settings in a direct but elegant way. Extensive experiments on seven benchmark datasets validate the significant superiority of our proposal in both unsupervised and semi-supervised manners.
Image reconstruction plays a critical role in the implementation of all contemporary imaging modalities across the physical and life sciences including optical, MRI, CT, PET, and radio astronomy. During an image acquisition, the sensor encodes an int
Domain adaptation (DA) aims to transfer knowledge from a label-rich and related domain (source domain) to a label-scare domain (target domain). Pseudo-labeling has recently been widely explored and used in DA. However, this line of research is still
Visual domain adaptation aims to learn robust classifiers for the target domain by leveraging knowledge from a source domain. Existing methods either attempt to align the cross-domain distributions, or perform manifold subspace learning. However, the
Existing unsupervised domain adaptation methods aim to transfer knowledge from a label-rich source domain to an unlabeled target domain. However, obtaining labels for some source domains may be very expensive, making complete labeling as used in prio
Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source domain, making most previous works