ﻻ يوجد ملخص باللغة العربية
Cosmography becomes non-predictive when cosmic data span beyond the red shift limit $zsimeq1 $. This leads to a emph{strong convergence issue} that jeopardizes its viability. In this work, we critically compare the two main solutions of the convergence problem, i.e. the $y$-parametrizations of the redshift and the alternatives to Taylor expansions based on Pade series. In particular, among several possibilities, we consider two widely adopted parametrizations, namely $y_1=1-a$ and $y_2=arctan(a^{-1}-1)$, being $a$ the scale factor of the Universe. We find that the $y_2$-parametrization performs relatively better than the $y_1$-parametrization over the whole redshift domain. Even though $y_2$ overcomes the issues of $y_1$, we get that the most viable approximations of the luminosity distance $d_L(z)$ are given in terms of Pade approximations. In order to check this result by means of cosmic data, we analyze the Pade approximations up to the fifth order, and compare these series with the corresponding $y$-variables of the same orders. We investigate two distinct domains involving Monte Carlo analysis on the Pantheon Superovae Ia data, $H(z)$ and shift parameter measurements. We conclude that the (2,1) Pade approximation is statistically the optimal approach to explain low and high-redshift data, together with the fifth-order $y_2$-parametrization. At high redshifts, the (3,2) Pade approximation cannot be fully excluded, while the (2,2) Pade one is essentially ruled out.
Cosmography is a powerful tool to investigate the Universe kinematic and then to reconstruct dynamics in a model-independent way. However, recent new measurements of supernovae Ia and quasars have populated the Hubble diagram up to high redshifts ($z
Gamma-ray bursts (GRBs) detected at high redshift can be used to trace the cosmic expansion history. However, the calibration of their luminosity distances is not an easy task in comparison to Type Ia Supernovae (SNeIa). To calibrate these data, corr
Einstein Telescope (ET) is a 3rd generation gravitational-wave (GW) detector that is currently undergoing a design study. ET can detect millions of compact binary mergers up to redshifts 2-8. A small fraction of mergers might be observed in coinciden
A method to set constraints on the parameters of extended theories of gravitation is presented. It is based on the comparison of two series expansions of any observable that depends on H(z). The first expansion is of the cosmographical type, while th
Using a new sub-sample of observed strong gravitational lens systems, for the first time, we present the equation for the angular diameter distance in the $y$-redshift scenario for cosmography and use it to test the cosmographic parameters. In additi