ﻻ يوجد ملخص باللغة العربية
We prove a normal form for strong magnetic fields on a closed, oriented surface and use it to derive two dynamical results for the associated flow. First, we show the existence of KAM tori and trapping regions provided a natural non-resonance condition holds. Second, we prove that the flow cannot be Zoll unless (i) the Riemannian metric has constant curvature and the magnetic function is constant, or (ii) the magnetic function vanishes and the metric is Zoll. We complement the second result by exhibiting an exotic magnetic field on a flat two-torus yielding a Zoll flow for arbitrarily small rescalings.
In this paper we study rigidity aspects of Zoll magnetic systems on closed surfaces. We characterize magnetic systems on surfaces of positive genus given by constant curvature metrics and constant magnetic functions as the only magnetic systems such
Let $Q$ be a closed manifold admitting a locally-free action of a compact Lie group $G$. In this paper we study the properties of geodesic flows on $Q$ given by Riemannian metrics which are invariant by such an action. In particular, we will be inter
In this paper we prove the existence of a simultaneous local normalization for couples $(X,mathcal{G})$, where $X$ is a vector field which vanishes at a point and $mathcal{G}$ is a singular underlying geometric structure which is invariant with respe
We prove that in dimension 3 every nondegenerate contact form is carried by a broken book decomposition. As an application we get that if M is a closed irreducible oriented 3-manifold that is not a graph manifold, for example a hyperbolic manifold, t
In this paper we study some aspects of integrable magnetic systems on the two-torus. On the one hand, we construct the first non-trivial examples with the property that all magnetic geodesics with unit speed are closed. On the other hand, we show tha