ترغب بنشر مسار تعليمي؟ اضغط هنا

A^2-GCN: An Attribute-aware Attentive GCN Model for Recommendation

233   0   0.0 ( 0 )
 نشر من قبل Fan Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As important side information, attributes have been widely exploited in the existing recommender system for better performance. In the real-world scenarios, it is common that some attributes of items/users are missing (e.g., some movies miss the genre data). Prior studies usually use a default value (i.e., other) to represent the missing attribute, resulting in sub-optimal performance. To address this problem, in this paper, we present an attribute-aware attentive graph convolution network (A${^2}$-GCN). In particular, we first construct a graph, whereby users, items, and attributes are three types of nodes and their associations are edges. Thereafter, we leverage the graph convolution network to characterize the complicated interactions among <users, items, attributes>. To learn the node representation, we turn to the message-passing strategy to aggregate the message passed from the other directly linked types of nodes (e.g., a user or an attribute). To this end, we are capable of incorporating associate attributes to strengthen the user and item representations, and thus naturally solve the attribute missing problem. Considering the fact that for different users, the attributes of an item have different influence on their preference for this item, we design a novel attention mechanism to filter the message passed from an item to a target user by considering the attribute information. Extensive experiments have been conducted on several publicly accessible datasets to justify our model. Results show that our model outperforms several state-of-the-art methods and demonstrate the effectiveness of our attention method.



قيم البحث

اقرأ أيضاً

73 - Fan Liu , Zhiyong Cheng , Lei Zhu 2021
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN model s, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the users embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.
To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in cu rrent KG-based RS models is not necessarily a guarantee to improve the recommendation performance, which may even weaken the holistic model capability. This is because the construction of these KGs is independent of the collection of historical user-item interactions; hence, information in these KGs may not always be helpful for recommendation to all users. In this paper, we propose attentive Knowledge-aware Graph convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR). CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions, via our proposed Collaborative Guidance Mechanism. Specifically, CG-KGR first encapsulates historical interactions to interactive information summarization. Then CG-KGR utilizes it as guidance to extract information out of KGs, which eventually provides more precise personalized recommendation. We conduct extensive experiments on four real-world datasets over two recommendation tasks, i.e., Top-K recommendation and Click-Through rate (CTR) prediction. The experimental results show that the CG-KGR model significantly outperforms recent state-of-the-art models by 4.0-53.2% and 0.4-3.2%, in terms of Recall metric on Top-K recommendation and AUC on CTR prediction, respectively.
Item-based collaborative filtering (ICF) enjoys the advantages of high recommendation accuracy and ease in online penalization and thus is favored by the industrial recommender systems. ICF recommends items to a target user based on their similaritie s to the previously interacted items of the user. Great progresses have been achieved for ICF in recent years by applying advanced machine learning techniques (e.g., deep neural networks) to learn the item similarity from data. The early methods simply treat all the historical items equally and recent ones distinguish the different importance of items for a prediction. Despite the progress, we argue that those ICF models neglect the diverse intents of users on adopting items (e.g., watching a movie because of the director, leading actors, or the visual effects). As a result, they fail to estimate the item similarity on a finer-grained level to predict the users preference for an item, resulting in sub-optimal recommendation. In this work, we propose a general factor-level attention method for ICF models. The key of our method is to distinguish the importance of different factors when computing the item similarity for a prediction. To demonstrate the effectiveness of our method, we design a light attention neural network to integrate both item-level and factor-level attention for neural ICF models. It is model-agnostic and easy-to-implement. We apply it to two baseline ICF models and evaluate its effectiveness on six public datasets. Extensive experiments show the factor-level attention enhanced models consistently outperform their counterparts, demonstrating the potential of differentiate user intents on the factor-level for ICF recommendation models.
Modern deep neural networks (DNNs) have greatly facilitated the development of sequential recommender systems by achieving state-of-the-art recommendation performance on various sequential recommendation tasks. Given a sequence of interacted items, e xisting DNN-based sequential recommenders commonly embed each item into a unique vector to support subsequent computations of the user interest. However, due to the potentially large number of items, the over-parameterised item embedding matrix of a sequential recommender has become a memory bottleneck for efficient deployment in resource-constrained environments, e.g., smartphones and other edge devices. Furthermore, we observe that the widely-used multi-head self-attention, though being effective in modelling sequential dependencies among items, heavily relies on redundant attention units to fully capture both global and local item-item transition patterns within a sequence. In this paper, we introduce a novel lightweight self-attentive network (LSAN) for sequential recommendation. To aggressively compress the original embedding matrix, LSAN leverages the notion of compositional embeddings, where each item embedding is composed by merging a group of selected base embedding vectors derived from substantially smaller embedding matrices. Meanwhile, to account for the intrinsic dynamics of each item, we further propose a temporal context-aware embedding composition scheme. Besides, we develop an innovative twin-attention network that alleviates the redundancy of the traditional multi-head self-attention while retaining full capacity for capturing long- and short-term (i.e., global and local) item dependencies. Comprehensive experiments demonstrate that LSAN significantly advances the accuracy and memory efficiency of existing sequential recommenders.
Understanding users interactions with highly subjective content---like artistic images---is challenging due to the complex semantics that guide our preferences. On the one hand one has to overcome `standard recommender systems challenges, such as dea ling with large, sparse, and long-tailed datasets. On the other, several new challenges present themselves, such as the need to model content in terms of its visual appearance, or even social dynamics, such as a preference toward a particular artist that is independent of the art they create. In this paper we build large-scale recommender systems to model the dynamics of a vibrant digital art community, Behance, consisting of tens of millions of interactions (clicks and `appreciates) of users toward digital art. Methodologically, our main contributions are to model (a) rich content, especially in terms of its visual appearance; (b) temporal dynamics, in terms of how users prefer `visually consistent content within and across sessions; and (c) social dynamics, in terms of how users exhibit preferences both towards certain art styles, as well as the artists themselves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا