ﻻ يوجد ملخص باللغة العربية
Understanding the formation of stellar clusters requires following the interplay between gas and newly formed stars accurately. We therefore couple the magnetohydrodynamics code FLASH to the N-body code ph4 and the stellar evolution code SeBa using the Astrophysical Multipurpose Software Environment (AMUSE) to model stellar dynamics, evolution, and collisional N-body dynamics and the formation of binary and higher-order multiple systems, while implementing stellar feedback in the form of radiation, stellar winds and supernovae in FLASH. We here describe the algorithms used for each of these processes. We denote this integrated package Torch. We then use this novel numerical method to simulate the formation and early evolution of several examples of open clusters of ~1000 stars formed from clouds with a mass range of 10^3-10^5 M_sun. Analyzing the effects of stellar feedback on the gas and stars of the natal clusters, we find that in these examples, the stellar clusters are resilient to disruption, even in the presence of intense feedback. This can even slightly increase the amount of dense, Jeans unstable gas by sweeping up shells; thus, a stellar wind strong enough to trap its own H II region shows modest triggering of star formation. Our clusters are born moderately mass segregated, an effect enhanced by feedback, and retained after the ejection of their natal gas, in agreement with observations.
The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical int
We study feedback during massive star formation using semi-analytic methods, considering the effects of disk winds, radiation pressure, photoevaporation and stellar winds, while following protostellar evolution in collapsing massive gas cores. We fin
We aim to investigate the impact of the ionized radiation from the M16 HII region on the surrounding molecular cloud and on its hosted star formation. To present comprehensive multi-wavelength observations towards the M16 HII region, we used new CO d
Stellar population studies show that low mass galaxies in all environments exhibit stellar halos that are older and more spherically distributed than the main body of the galaxy. In some cases, there is a significant intermediate age component that e
Direct N-body calculations are presented of the early evolution of exposed clusters to quantify the influence of gas expulsion on the time-varying surface brightness. By assuming that the embedded OB stars drive out most of the gas after a given time