ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator

278   0   0.0 ( 0 )
 نشر من قبل Zhen-Sheng Yuan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The modern description of elementary particles, as formulated in the Standard Model of particle physics, is built on gauge theories. Gauge theories implement fundamental laws of physics by local symmetry constraints. For example, in quantum electrodynamics, Gausss law introduces an intrinsic local relation between charged matter and electromagnetic fields, which protects many salient physical properties including massless photons and a long-ranged Coulomb law. Solving gauge theories by classical computers is an extremely arduous task, which has stimulated a vigorous effort to simulate gauge-theory dynamics in microscopically engineered quantum devices. Previous achievements implemented density-dependent Peierls phases without defining a local symmetry, realized mappings onto effective models to integrate out either matter or electric fields, or were limited to very small systems. The essential gauge symmetry has not been observed experimentally. Here, we report the quantum simulation of an extended U(1) lattice gauge theory, and experimentally quantify the gauge invariance in a many-body system comprising matter and gauge fields. These are realized in defect-free arrays of bosonic atoms in an optical superlattice of 71 sites. We demonstrate full tunability of the model parameters and benchmark the matter--gauge interactions by sweeping across a quantum phase transition. Enabled by high-fidelity manipulation techniques, we measure the degree to which Gausss law is violated by extracting probabilities of locally gauge-invariant states from correlated atom occupations. Our work provides a way to explore gauge symmetry in the interplay of fundamental particles using controllable large-scale quantum simulators.



قيم البحث

اقرأ أيضاً

Gauge theories form the foundation of modern physics, with applications ranging from elementary particle physics and early-universe cosmology to condensed matter systems. We demonstrate emergent irreversible behavior, such as the approach to thermal equilibrium, by quantum simulating the fundamental unitary dynamics of a U(1) symmetric gauge field theory. While this is in general beyond the capabilities of classical computers, it is made possible through the experimental implementation of a large-scale cold atomic system in an optical lattice. The highly constrained gauge theory dynamics is encoded in a one-dimensional Bose--Hubbard simulator, which couples fermionic matter fields through dynamical gauge fields. We investigate global quantum quenches and the equilibration to a steady state well approximated by a thermal ensemble. Our work establishes a new realm for the investigation of elusive phenomena, such as Schwinger pair production and string-breaking, and paves the way for more complex higher-dimensional gauge theories on quantum synthetic matter devices.
Understanding the collective behavior of strongly correlated electrons in materials remains a central problem in many-particle quantum physics. A minimal description of these systems is provided by the disordered Fermi-Hubbard model (DFHM), which inc orporates the interplay of motion in a disordered lattice with local inter-particle interactions. Despite its minimal elements, many dynamical properties of the DFHM are not well understood, owing to the complexity of systems combining out-of-equilibrium behavior, interactions, and disorder in higher spatial dimensions. Here, we study the relaxation dynamics of doubly occupied lattice sites in the three-dimensional (3D) DFHM using interaction-quench measurements on a quantum simulator composed of fermionic atoms confined in an optical lattice. In addition to observing the widely studied effect of disorder inhibiting relaxation, we find that the cooperation between strong interactions and disorder also leads to the emergence of a dynamical regime characterized by textit{disorder-enhanced} relaxation. To support these results, we develop an approximate numerical method and a phenomenological model that each capture the essential physics of the decay dynamics. Our results provide a theoretical framework for a previously inaccessible regime of the DFHM and demonstrate the ability of quantum simulators to enable understanding of complex many-body systems through minimal models.
The use of an electron beam to remove ultracold atoms from selected sites in an optical lattice has opened up new opportunities to study transport in quantum systems [R. Labouvie {it et al. }, Phys. Rev. Lett. {bf 115}, 050601 (2015)]. Inspired by th is experimental result, we examine the effects of number difference, dephasing, and initial quantum statistics on the filling of an initially depleted middle well in the three-well inline Bose-Hubbard model. We find that the well-known phenomenon of macroscopic self-trapping is the main contributor to oscillatory negative differential conductivity in our model, with phase diffusion being a secondary effect. However, we find that phase diffusion is required for the production of direct atomic current, with the coherent process showing damped oscillatory currents. We also find that our results are highly dependent on the initial quantum states of the atoms in the system.
Quantum simulators have the exciting prospect of giving access to real-time dynamics of lattice gauge theories, in particular in regimes that are difficult to compute on classical computers. Future progress towards scalable quantum simulation of latt ice gauge theories, however, hinges crucially on the efficient use of experimental resources. As we argue in this work, due to the fundamental non-uniqueness of discretizing the relativistic Dirac Hamiltonian, the lattice representation of gauge theories allows for an optimization that up to now has been left unexplored. We exemplify our discussion with lattice quantum electrodynamics in two-dimensional space-time, where we show that the formulation through Wilson fermions provides several advantages over the previously considered staggered fermions. Notably, it enables a strongly simplified optical lattice setup and it reduces the number of degrees of freedom required to simulate dynamical gauge fields. Exploiting the optimal representation, we propose an experiment based on a mixture of ultracold atoms trapped in a tilted optical lattice. Using numerical benchmark simulations, we demonstrate that a state-of-the-art quantum simulator may access the Schwinger mechanism and map out its non-perturbative onset.
For a Bose-Hubbard dimer, we study quenches of the site energy imbalance, taking a highly asymmetric Hamiltonian to a fully symmetric one. The ramp is carried out over a finite time that interpolates between the instantaneous and adiabatic limits. We provide results for the excess energy of the final state compared to the ground state energy of the final Hamiltonian, as a function of the quench rate. This excess energy serves as the analog of the defect density that is considered in the Kibble-Zurek picture of ramps across phase transitions. We also examine the fate of quantum `self-trapping when the ramp is not instantaneous.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا