ﻻ يوجد ملخص باللغة العربية
Referring expression comprehension (REC) and segmentation (RES) are two highly-related tasks, which both aim at identifying the referent according to a natural language expression. In this paper, we propose a novel Multi-task Collaborative Network (MCN) to achieve a joint learning of REC and RES for the first time. In MCN, RES can help REC to achieve better language-vision alignment, while REC can help RES to better locate the referent. In addition, we address a key challenge in this multi-task setup, i.e., the prediction conflict, with two innovative designs namely, Consistency Energy Maximization (CEM) and Adaptive Soft Non-Located Suppression (ASNLS). Specifically, CEM enables REC and RES to focus on similar visual regions by maximizing the consistency energy between two tasks. ASNLS supresses the response of unrelated regions in RES based on the prediction of REC. To validate our model, we conduct extensive experiments on three benchmark datasets of REC and RES, i.e., RefCOCO, RefCOCO+ and RefCOCOg. The experimental results report the significant performance gains of MCN over all existing methods, i.e., up to +7.13% for REC and +11.50% for RES over SOTA, which well confirm the validity of our model for joint REC and RES learning.
Reference expression comprehension (REC) aims to find the location that the phrase refer to in a given image. Proposal generation and proposal representation are two effective techniques in many two-stage REC methods. However, most of the existing wo
Referring expression comprehension (REF) aims at identifying a particular object in a scene by a natural language expression. It requires joint reasoning over the textual and visual domains to solve the problem. Some popular referring expression data
In this paper, we propose a novel end-to-end model, namely Single-Stage Grounding network (SSG), to localize the referent given a referring expression within an image. Different from previous multi-stage models which rely on object proposals or detec
Given a natural language expression and an image/video, the goal of referring segmentation is to produce the pixel-level masks of the entities described by the subject of the expression. Previous approaches tackle this problem by implicit feature int
Referring image segmentation aims at segmenting the foreground masks of the entities that can well match the description given in the natural language expression. Previous approaches tackle this problem using implicit feature interaction and fusion b