ﻻ يوجد ملخص باللغة العربية
We deduce Katzs theorems for $(A,B)$-exponential sums over finite fields using $ell$-adic cohomology and a theorem of Denef-Loeser, removing the hypothesis that $A+B$ is relatively prime to the characteristic $p$. In some degenerate cases, the Betti number estimate is improved using toric decomposition and Adolphson-Sperbers bound for the degree of $L$-functions. Applying the facial decomposition theorem in cite{W1}, we prove that the universal family of $(A,B)$-polynomials is generically ordinary for its $L$-function when $p$ is in certain arithmetic progression.
In the present article, we use Robbas method to give an estimation of the Newton polygon for the L function on torus.
Using $ell$-adic cohomology of tensor inductions of lisse $overline{mathbb Q}_ell$-sheaves, we study a class of incomplete character sums.
Normalized exponential sums are entire functions of the form $$ f(z)=1+H_1e^{w_1z}+cdots+H_ne^{w_nz}, $$ where $H_1,ldots, H_ninC$ and $0<w_1<ldots<w_n$. It is known that the zeros of such functions are in finitely many vertical strips $S$. The
We give upper bounds for the level and the Pythagoras number of function fields over fraction fields of integral Henselian excellent local rings. In particular, we show that the Pythagoras number of $mathbb{R}((x_1,dots,x_n))$ is $leq 2^{n-1}$, which
In this paper, we consider the following $(A, B)$-polynomial $f$ over finite field: $$f(x_0,x_1,cdots,x_n)=x_0^Ah(x_1,cdots,x_n)+g(x_1,cdots,x_n)+P_B(1/x_0),$$ where $h$ is a Deligne polynomial of degree $d$, $g$ is an arbitrary polynomial of degree