ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise and full counting statistics of a Cooper pair splitter

101   0   0.0 ( 0 )
 نشر من قبل Christian Flindt
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate theoretically the noise and the full counting statistics of electrons that are emitted from a superconductor into two spatially separated quantum dots by the splitting of Cooper pairs and further on collected in two normal-state electrodes. With negatively-biased drain electrodes and a large superconducting gap, the dynamics of the Cooper pair splitter can be described by a Markovian quantum master equation. Using techniques from full counting statistics, we evaluate the electrical currents, their noise power spectra, and the power-power correlations in the output leads. The current fluctuations can be attributed to the competition between Cooper pair splitting and elastic cotunneling between the quantum dots via the superconductor. In one regime, these processes can be clearly distinguished in the cross-correlation spectrum with peaks and dips appearing at characteristic frequencies associated with elastic cotunneling and Cooper pair splitting, respectively. We corroborate this interpretation by analyzing the charge transport fluctuations in the time domain, specifically by investigating the $g^{(2)}$-function of the output currents. Our work identifies several experimental signatures of the fundamental transport processes involved in Cooper pair splitting and provides specific means to quantify their relative strengths. As such, our results may help guide and interpret future experiments on current fluctuations in Cooper pair splitters.

قيم البحث

اقرأ أيضاً

Cooper pair splitters are promising candidates for generating spin-entangled electrons. However, the splitting of Cooper pairs is a random and noisy process, which hinders further synchronized operations on the entangled electrons. To circumvent this problem, we here propose and analyze a dynamic Cooper pair splitter that produces a noiseless and regular flow of spin-entangled electrons. The Cooper pair splitter is based on a superconductor coupled to quantum dots, whose energy levels are tuned in and out of resonance to control the splitting process. We identify the optimal operating conditions for which exactly one Cooper pair is split per period of the external drive and the flow of entangled electrons becomes noiseless. To characterize the regularity of the Cooper pair splitter in the time domain, we analyze the $g^{(2)}$-function of the output currents and the distribution of waiting times between split Cooper pairs. Our proposal is feasible using current technology, and it paves the way for dynamic quantum information processing with spin-entangled electrons.
We report an experimental study of Cooper pair splitting in an encapsulated graphene based multiterminal junction in the ballistic transport regime. Our device consists of two transverse junctions, namely the superconductor/graphene/superconductor an d the normal metal/graphene/normal metal junctions. In this case, the electronic transport through one junction can be tuned by an applied bias along the other. We observe clear signatures of Cooper pair splitting in the local as well as nonlocal electronic transport measurements. Our experimental data can be very well described by using a modified Octavio-Tinkham-Blonder-Klapwijk model and a three-terminal beam splitter model.
A Cooper pair splitter consists of a central superconducting contact, S, from which electrons are injected into two parallel, spatially separated quantum dots (QDs). This geometry and electron interactions can lead to correlated electrical currents d ue to the spatial separation of spin-singlet Cooper pairs from S. We present experiments on such a device with a series of bottom gates, which allows for spatially resolved tuning of the tunnel couplings between the QDs and the electrical contacts and between the QDs. Our main findings are gate-induced transitions between positive conductance correlation in the QDs due to Cooper pair splitting and negative correlations due to QD dynamics. Using a semi-classical rate equation model we show that the experimental findings are consistent with in-situ electrical tuning of the local and nonlocal quantum transport processes. In particular, we illustrate how the competition between Cooper pair splitting and local processes can be optimized in such hybrid nanostructures.
We study the quantum charge noise and measurement properties of the double Cooper pair resonance point in a superconducting single-electron transistor (SSET) coupled to a Josephson charge qubit. Using a density matrix approach for the coupled system, we obtain a full description of the measurement back-action; for weak coupling, this is used to extract the quantum charge noise. Unlike the case of a non-superconducting SET, the back-action here can induce population inversion in the qubit. We find that the Cooper pair resonance process allows for a much better measurement than a similar non-superconducting SET, and can approach the quantum limit of efficiency.
We investigate the nonlocal thermoelectric transport in a Cooper-pair splitter based on a double-quantum-dot-superconductor three-terminal hybrid structure. We find that the nonlocal coupling between the superconductor and the quantum dots gives rise to nonlocal thermoelectric effects which originate from the nonlocal particle-hole breaking of the system. We show that Cooper-pair splitting induces the generation of a thermo-current in the superconducting lead without any transfer of charge between the two normal metal leads. Conversely, we show that a nonlocal heat exchange between the normal leads is mediated by non-local Andreev reflection. We discuss the influence of finite Coulomb interaction and study under which conditions nonlocal power generation becomes possible, and when the Cooper-pair splitter can be employed as a cooling device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا