ﻻ يوجد ملخص باللغة العربية
We propose a perturbative method to compute the deflection angle of both null and massive particles for source and detector at finite distance. This method applies universally to the motion of particles with general velocity in the equatorial plane of stationary axisymmetric spacetimes or static spherical symmetric spacetimes that are asymptotically flat. The resultant deflection angle automatically arranges into a quasi-inverse series form of the impact parameter, with coefficients depending on the metric functions, the signal velocity and the source and detector locations through the apparent angles. In the large impact parameter limit, the series coefficients are reduced to rational functions of sine/cosine functions of the zero order apparent angle.
In order to clarify effects of the finite distance from a lens object to a light source and a receiver, the gravitational deflection of light has been recently reexamined by using the Gauss-Bonnet (GB) theorem in differential geometry [Ishihara et al
By using a method improved with a generalized optical metric, the deflection of light for an observer and source at finite distance from a lens object in a stationary, axisymmetric and asymptotically flat spacetime has been recently discussed [Ono, I
By using a method improved with a generalized optical metric, the deflection of light for an observer and source at finite distance from a lens object in a stationary, axisymmetric and asymptotically flat spacetime has been recently discussed [Ono, I
Continuing work initiated in an earlier publication [Ishihara, Suzuki, Ono, Kitamura, Asada, Phys. Rev. D {bf 94}, 084015 (2016) ], we discuss a method of calculating the bending angle of light in a static, spherically symmetric and asymptotically fl
A perturbative method to compute the deflection angle of both timelike and null rays in arbitrary static and spherically symmetric spacetimes in the strong field limit is proposed. The result takes a quasi-series form of $(1-b_c/b)$ where $b$ is the