ترغب بنشر مسار تعليمي؟ اضغط هنا

Gender Representation in Open Source Speech Resources

51   0   0.0 ( 0 )
 نشر من قبل Mahault Garnerin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the rise of artificial intelligence (AI) and the growing use of deep-learning architectures, the question of ethics, transparency and fairness of AI systems has become a central concern within the research community. We address transparency and fairness in spoken language systems by proposing a study about gender representation in speech resources available through the Open Speech and Language Resource platform. We show that finding gender information in open source corpora is not straightforward and that gender balance depends on other corpus characteristics (elicited/non elicited speech, low/high resource language, speech task targeted). The paper ends with recommendations about metadata and gender information for researchers in order to assure better transparency of the speech systems built using such corpora.



قيم البحث

اقرأ أيضاً

This paper introduces a new open-source speech corpus named speechocean762 designed for pronunciation assessment use, consisting of 5000 English utterances from 250 non-native speakers, where half of the speakers are children. Five experts annotated each of the utterances at sentence-level, word-level and phoneme-level. A baseline system is released in open source to illustrate the phoneme-level pronunciation assessment workflow on this corpus. This corpus is allowed to be used freely for commercial and non-commercial purposes. It is available for free download from OpenSLR, and the corresponding baseline system is published in the Kaldi speech recognition toolkit.
Gender is widely discussed in the context of language tasks and when examining the stereotypes propagated by language models. However, current discussions primarily treat gender as binary, which can perpetuate harms such as the cyclical erasure of no n-binary gender identities. These harms are driven by model and dataset biases, which are consequences of the non-recognition and lack of understanding of non-binary genders in society. In this paper, we explain the complexity of gender and language around it, and survey non-binary persons to understand harms associated with the treatment of gender as binary in English language technologies. We also detail how current language representations (e.g., GloVe, BERT) capture and perpetuate these harms and related challenges that need to be acknowledged and addressed for representations to equitably encode gender information.
123 - Yunpei Zheng , Lin Li , Luo Zhong 2018
User profiling means exploiting the technology of machine learning to predict attributes of users, such as demographic attributes, hobby attributes, preference attributes, etc. Its a powerful data support of precision marketing. Existing methods main ly study network behavior, personal preferences, post texts to build user profile. Through our data analysis of micro-blog, we find that females show more positive and have richer emotions than males in online social platform. This difference is very conducive to the distinction between genders. Therefore, we argue that sentiment context is important as well for user profiling.This paper focuses on exploiting microblog user posts to predict one of the demographic labels: gender. We propose a Sentiment Representation Learning based Multi-Layer Perceptron(SRL-MLP) model to classify gender. First we build a sentiment polarity classifier in advance by training Long Short-Term Memory(LSTM) model on e-commerce review corpus. Next we transfer sentiment representation to a basic MLP network. Last we conduct experiments on gender classification by sentiment representation. Experimental results show that our approach can improve gender classification accuracy by 5.53%, from 84.20% to 89.73%.
In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by pr oper temporal segmentation to make the representations phoneme-synchronized, and proper phonetic clustering to have total number of distinct representations close to the number of phonemes. Mapping between the distinct representations and phonemes is learned from a small amount of annotated paired data. Preliminary experiments on LJSpeech demonstrated the learned representations for vowels have relative locations in latent space in good parallel to that shown in the IPA vowel chart defined by linguistics experts. With less than 20 minutes of annotated speech, our method outperformed existing methods on phoneme recognition and is able to synthesize intelligible speech that beats our baseline model.
Recent studies have shown that word embeddings exhibit gender bias inherited from the training corpora. However, most studies to date have focused on quantifying and mitigating such bias only in English. These analyses cannot be directly extended to languages that exhibit morphological agreement on gender, such as Spanish and French. In this paper, we propose new metrics for evaluating gender bias in word embeddings of these languages and further demonstrate evidence of gender bias in bilingual embeddings which align these languages with English. Finally, we extend an existing approach to mitigate gender bias in word embeddings under both monolingual and bilingual settings. Experiments on modified Word Embedding Association Test, word similarity, word translation, and word pair translation tasks show that the proposed approaches effectively reduce the gender bias while preserving the utility of the embeddings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا