ترغب بنشر مسار تعليمي؟ اضغط هنا

Transmissive Metagrating for Arbitrary Wavefront Shaping Over the Full Visible Spectrum

160   0   0.0 ( 0 )
 نشر من قبل Zi-Lan Deng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Metagratings have been shown to form an agile and efficient platform for extreme wavefront manipulation, going beyond the limitations of gradient metasurfaces. Previous approaches for transmissive metagratings have resorted on compound asymmetric inclusions to achieve single-channel near-perfect diffraction. However, such complex inclusions are sensitive to geometric parameters and lack the flexibility for arbitrary phase modulation, restricting applications to beam deflection. Here, we show perfect unitary diffraction in all-dielectric transmissive metagratings using rectangular inclusions by tailoring their multipole interferences. Using this principle, we experimentally demonstrate analog phase profile encoding of a hologram through displacement modulation of CMOS-compatible silicon nitride nanobars, manifesting broadband and wide-angle high diffraction efficiencies for both polarizations and across the entire visible range. Featured with extreme angle/wavelength/polarization tolerance and alleviated structural complexity for both design and fabrication, our demonstration unlocks the full potential of metagrating-based wavefront manipulation for a variety of practical applications.

قيم البحث

اقرأ أيضاً

Converting spin angular momentum to orbital angular momentum has been shown to be a practical and efficient method for generating optical beams carrying orbital angular momentum and possessing a space-varying polarized field. Here, we present novel l iquid crystal devices for tailoring the wavefront of optical beams through the Pancharatnam-Berry phase concept. We demonstrate the versatility of these devices by generating an extensive range of optical beams such as beams carrying $pm200$ units of orbital angular momentum along with Bessel, Airy and Ince-Gauss beams. We characterize both the phase and the polarization properties of the generated beams, confirming our devices performance.
Photonic devices rarely provide both elaborate spatial control and sharp spectral control over an incoming wavefront. In optical metasurfaces, for example, the localized modes of individual meta-units govern the wavefront shape over a broad bandwidth , while nonlocal lattice modes extended over many meta-units support high quality-factor resonances. We experimentally demonstrate dielectric metasurfaces that offer both spatial and spectral control of light, realizing a metalens focusing light only over a narrowband resonance while leaving off-resonant frequencies unaffected. Our devices realize such functionality by supporting a quasi-bound state in the continuum encoded with a spatially varying geometric phase. We also show that our resonant metasurfaces can be cascaded to realize hyperspectral wavefront shaping, which may prove useful for augmented reality glasses, transparent displays and high-capacity optical communications.
Metasurface optics provide an ultra-thin alternative to conventional refractive lenses. A present challenge is in realizing metasurfaces that exhibit tunable optical properties and achromatic behavior across the visible spectrum. Here, we report the design, fabrication, and characterization of metasurface lenses (metalenses) that use asymmetric TiO2 nanostructures to induce a polarization-dependent optical response. By rotating the polarization of linearly-polarized input light, the focal length of a 40 micrometer-diameter metalens is tuned from 220-550 micrometers with nearly diffraction-limited performance. We show that imparting a wavelength-dependent polarization rotation on incident light enables achromatic focusing over a wide band of the visible spectrum, 483-620 nm. We use this property to demonstrate varifocal color imaging with white light from a halogen source. Tunable achromatic metalenses may be useful for applications in imaging and display.
Light scattering limits the penetration depth of non-invasive Raman spectroscopy in biological media. While safe levels of irradiation may be adequate to analyze superficial tissue, scattering of the pump beam reduces the Raman signal to undetectable levels deeper within the tissue. Here we demonstrate how wavefront shaping techniques can significantly increase the Raman signal at depth, while keeping the total irradiance constant, thus increasing the amount of Raman signal available for detection.
We study the three-dimensional (3D) spatially-resolved distribution of the energy density of light in a 3D scattering medium upon the excitation of open transmission channels. The open transmission channels are excited by spatially shaping the incide nt optical wavefronts. To probe the local energy density, we excite isolated fluorescent nanospheres distributed inside the medium. From the spatial fluorescent intensity pattern we obtain the position of each nanosphere, while the total fluorescent intensity gauges the energy density. Our 3D spatially-resolved measurements reveal that the local energy density versus depth (z) is enhanced up to 26X at the back surface of the medium, while it strongly depends on the transverse (x; y) position. We successfully interpret our results with a newly developed 3D model that considers the time-reversed diffusion starting from a point source at the back surface. Our results are relevant for white LEDs, random lasers, solar cells, and biomedical optics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا